Opto-valleytronics in the 2D van der Waals heterostructure

被引:29
|
作者
Rasmita, Abdullah [1 ]
Gao, Wei-bo [1 ,2 ,3 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Photon Inst, Singapore 637371, Singapore
[3] Nanyang Technol Univ, Ctr Disrupt Photon Technol, Singapore 637371, Singapore
基金
新加坡国家研究基金会;
关键词
opto-valleytronics; two-dimensional (2D) heterostructure; interlayer exciton; transition metal dichalcogenide; proximity effect; ULTRAFAST CHARGE-TRANSFER; VALLEY POLARIZATION; INTERLAYER EXCITONS; ELECTRICAL CONTROL; MONOLAYER; SPIN; DYNAMICS; MOS2; EXCITATIONS; POLARITONS;
D O I
10.1007/s12274-020-3036-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of information processing devices with minimum carbon emission is crucial in this information age. One of the approaches to tackle this challenge is by using valleys (local extremum points in the momentum space) to encode the information instead of charges. The valley information in some material such as monolayer transition metal dichalcogenide (TMD) can be controlled by using circularly polarized light. This opens a new field called opto-valleytronics. In this article, we first review the valley physics in monolayer TMD and two-dimensional (2D) heterostructure composed of monolayer TMD and other materials. Such 2D heterostructure has been shown to exhibit interesting phenomena such as interlayer exciton, magnetic proximity effect, and spin-orbit proximity effect, which is beneficial for opto-valleytronics application. We then review some of the optical valley control methods that have been used in the monolayer TMD and the 2D heterostructure. Finally, a summary and outlook of the 2D heterostructure opto-valleytronics are given.
引用
收藏
页码:1901 / 1911
页数:11
相关论文
共 50 条
  • [1] Opto-valleytronics in the 2D van der Waals heterostructure
    Abdullah Rasmita
    Wei-bo Gao
    Nano Research, 2021, 14 : 1901 - 1911
  • [2] Nonvolatile Controlling Valleytronics by Ferroelectricity in 2H-VSe2/Sc2CO2 van der Waals Heterostructure
    Lei, Chengan
    Xu, Xilong
    Zhang, Ting
    Huang, Baibiao
    Dai, Ying
    Ma, Yandong
    JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (04) : 2802 - 2809
  • [3] 2D multifunctional SiAs2/GeAs2 van der Waals heterostructure
    Feng, Leihao
    Zhang, Xi
    Zheng, Quan
    Nie, Ya
    Xiang, Gang
    NANOTECHNOLOGY, 2022, 33 (41)
  • [4] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [5] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [6] Facile fabrication for a stable interface in 2D materials/graphene van der Waals heterostructure
    Du, Hyewon
    Kim, Seonyeong
    Kim, Taekwang
    Shin, Somyeong
    Song, Hyeon-kyo
    Kim, Hansung
    Kang, Dain
    Woo, Yun Sung
    Seo, Sunae
    APPLIED PHYSICS EXPRESS, 2021, 14 (05)
  • [7] 2D materials and van der Waals heterostructures
    Novoselov, K. S.
    Mishchenko, A.
    Carvalho, A.
    Castro Neto, A. H.
    SCIENCE, 2016, 353 (6298)
  • [8] Tunable geometric photocurrent in van der Waals heterostructure
    Rasmita, Abdullah
    Jiang, Chongyun
    Ma, Hui
    Ji, Zhurun
    Agarwal, Ritesh
    Gao, Wei-bo
    OPTICA, 2020, 7 (09): : 1204 - 1208
  • [9] Excitonic devices with van der Waals heterostructures: valleytronics meets twistronics
    Ciarrocchi, Alberto
    Tagarelli, Fedele
    Avsar, Ahmet
    Kis, Andras
    NATURE REVIEWS MATERIALS, 2022, 7 (06) : 449 - 464
  • [10] Enhanced Spin Relaxation Time in a 2D/1D Van Der Waals Hybrid Heterostructure
    Avedissian, Garen
    Dolan, Eoin
    Martin-Garcia, Beatriz
    Gobbi, Marco
    Casanova, Felix
    Hueso, Luis E.
    SMALL, 2025,