3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks

被引:115
|
作者
Rastin, Hadi [1 ]
Zhang, Bingyang [1 ]
Mazinani, Arash [1 ]
Hassan, Kamrul [1 ]
Bi, Jingxiu [1 ]
Tran Thanh Tung [1 ]
Losic, Dusan [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
关键词
HYDROGELS; COMPOSITE; FIBERS;
D O I
10.1039/d0nr02581j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes, a new family of burgeoning two-dimensional (2D) transition metal carbides/nitrides, have been extensively explored in recent years owing to their outstanding properties such as a large specific surface area, high electrical conductivity, low toxicity, and biodegradability. Numerous efforts have been devoted to exploring MXenes for various biomedical applications such as cancer therapy, bioimaging, biosensing, and drug delivery. However, the potential application of MXene nanosheets in tissue engineering has been almost overlooked despite their excellent performance in other biomedical applications. The over-arching goal of this paper is to demonstrate the potential of MXene cell-laden bioinks for tissue engineering and their ability to assemble functional scaffolds to regenerate damaged tissue via 3D bioprinting. We formulate a new electroconductive cell-laden bioink composed of Ti3C2 MXene nanosheets dispersed homogeneously within hyaluronic acid/alginate (HA/Alg) hydrogels and showed its performance for extrusion-based 3D bioprinting. The prepared hydrogel bioinks with MXenes display excellent rheological properties, which allows the fabrication of multilayered 3D structures with high resolution and shape retention. Moreover, the introduction of Ti3C2 MXene nanosheets within the HA/Alg hydrogel introduces electrical conductivity to the ink, addressing the poor electrical conductivity of the current bioinks that mismatch with the physico-chemical properties of tissue. In addition, the MXene nanocomposite ink with encapsulated Human Embryonic Kidney 293 (HEK-293) cells displayed high cell viability (>95%) in both bulk hydrogel and 3D bioprinted structures. These results suggest that MXene nanocomposite bioinks and their 3D bioprinting with high electrical conductivity, biocompatibility and degradability can synergize some new applications for tissue and neural engineering.
引用
收藏
页码:16069 / 16080
页数:12
相关论文
共 50 条
  • [31] 3D bioprinting of cell-laden thermosensitive methylcellulose/nanosilicate composite hydrogels
    Yun Hyeok Choi
    Yong Ho Yeo
    Dongjin Lee
    Su A. Park
    Won Ho Park
    Cellulose, 2023, 30 : 5093 - 5112
  • [32] Engineering of hydrogel-based bioinks for the fabrication of cell-laden 3D constructs
    Malda, J.
    HUMAN GENE THERAPY, 2013, 24 (12) : A27 - A27
  • [33] Biobased hydrogel bioinks of pectin, nanocellulose and lysozyme nanofibrils for the bioprinting of A375 melanoma cell-laden 3D in vitro platforms
    Teixeira, Maria C.
    Lameirinhas, Nicole S.
    Carvalho, Joao P. F.
    Luis, Jorge
    Oliveira, Helena
    Oliveira, Jose Martinho
    Silvestre, Armando J. D.
    Vilela, Carla
    Freire, Carmen S. R.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 282
  • [34] Nanocomposite Hydrogel Bioinks for 3D Bioprinting of Tumor Models
    Wang, Yue
    Duan, Yixiong
    Yang, Bai
    Li, Yunfeng
    BIOMACROMOLECULES, 2024, 25 (08) : 5288 - 5299
  • [35] Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues
    Jeon, O.
    Lee, Y. B.
    Hinton, T. J.
    Feinberg, A. W.
    Alsberg, E.
    MATERIALS TODAY CHEMISTRY, 2019, 12 : 61 - 70
  • [36] 3D Bioprinting a Cell-Laden Bone Matrix for Breast Cancer Metastasis Study
    Zhou, Xuan
    Zhu, Wei
    Nowicki, Margaret
    Miao, Shida
    Cui, Haitao
    Holmes, Benjamin
    Glazer, Robert I.
    Zhang, Lijie Grace
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (44) : 30017 - 30026
  • [37] Development of multiparametric bioprinting method for generation of 3D printed cell-laden structures
    Lipshutz, Sophie
    Kim, Yoontae
    Curtis, Micaila
    Friedrich, Leanne
    Alimperti, Stella
    BIOTECHNOLOGY PROGRESS, 2025,
  • [38] Development of dynamically cross-linked hydrogels for 3D printing of cell-laden bioinks
    Baker, Matthew
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [39] Gelatin Methacrylamide Hydrogel with Graphene Nanoplatelets for Neural Cell-laden 3D Bioprinting
    Zhu, Wei
    Harris, Brent T.
    Zhang, Lijie Grace
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 4185 - 4188
  • [40] Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds
    Deo, Kaivalya A.
    Singh, Kanwar Abhay
    Peak, Charles W.
    Alge, Daniel L.
    Gaharwar, Akhilesh K.
    TISSUE ENGINEERING PART A, 2020, 26 (5-6) : 318 - 338