3D bioprinting of cell-laden electroconductive MXene nanocomposite bioinks

被引:115
|
作者
Rastin, Hadi [1 ]
Zhang, Bingyang [1 ]
Mazinani, Arash [1 ]
Hassan, Kamrul [1 ]
Bi, Jingxiu [1 ]
Tran Thanh Tung [1 ]
Losic, Dusan [1 ]
机构
[1] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
关键词
HYDROGELS; COMPOSITE; FIBERS;
D O I
10.1039/d0nr02581j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MXenes, a new family of burgeoning two-dimensional (2D) transition metal carbides/nitrides, have been extensively explored in recent years owing to their outstanding properties such as a large specific surface area, high electrical conductivity, low toxicity, and biodegradability. Numerous efforts have been devoted to exploring MXenes for various biomedical applications such as cancer therapy, bioimaging, biosensing, and drug delivery. However, the potential application of MXene nanosheets in tissue engineering has been almost overlooked despite their excellent performance in other biomedical applications. The over-arching goal of this paper is to demonstrate the potential of MXene cell-laden bioinks for tissue engineering and their ability to assemble functional scaffolds to regenerate damaged tissue via 3D bioprinting. We formulate a new electroconductive cell-laden bioink composed of Ti3C2 MXene nanosheets dispersed homogeneously within hyaluronic acid/alginate (HA/Alg) hydrogels and showed its performance for extrusion-based 3D bioprinting. The prepared hydrogel bioinks with MXenes display excellent rheological properties, which allows the fabrication of multilayered 3D structures with high resolution and shape retention. Moreover, the introduction of Ti3C2 MXene nanosheets within the HA/Alg hydrogel introduces electrical conductivity to the ink, addressing the poor electrical conductivity of the current bioinks that mismatch with the physico-chemical properties of tissue. In addition, the MXene nanocomposite ink with encapsulated Human Embryonic Kidney 293 (HEK-293) cells displayed high cell viability (>95%) in both bulk hydrogel and 3D bioprinted structures. These results suggest that MXene nanocomposite bioinks and their 3D bioprinting with high electrical conductivity, biocompatibility and degradability can synergize some new applications for tissue and neural engineering.
引用
收藏
页码:16069 / 16080
页数:12
相关论文
共 50 条
  • [1] Emerging trends and prospects of electroconductive bioinks for cell-laden and functional 3D bioprinting
    Handral, Harish K.
    Natu, Vaishali P.
    Cao, Tong
    Fuh, Jerry Y. H.
    Sriram, Gopu
    Lu, Wen F.
    BIO-DESIGN AND MANUFACTURING, 2022, 5 (02) : 396 - 411
  • [2] Cell-Laden Nanocellulose/Chitosan-Based Bioinks for 3D Bioprinting and Enhanced Osteogenic Cell Differentiation
    Maturavongsadit, Panita
    Narayanan, Lokesh Karthik
    Chansoria, Parth
    Shirwaiker, Rohan
    Benhabbour, S. Rahima
    ACS APPLIED BIO MATERIALS, 2021, 4 (03) : 2342 - 2353
  • [3] 3D Bioprinting of Oxygenated Cell-Laden Gelatin Methacryloyl Constructs
    Erdem, Ahmet
    Darabi, Mohammad Ali
    Nasiri, Rohollah
    Sangabathuni, Sivakoti
    Ertas, Yavuz Nuri
    Alem, Halima
    Hosseini, Vahid
    Shamloo, Amir
    Nasr, Ali S.
    Ahadian, Samad
    Dokmeci, Mehmet R.
    Khademhosseini, Ali
    Ashammakhi, Nureddin
    ADVANCED HEALTHCARE MATERIALS, 2020, 9 (15)
  • [4] Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers
    Levato, Riccardo
    Visser, Jetze
    Planell, Josep A.
    Engel, Elisabeth
    Malda, Jos
    Mateos-Timoneda, Miguel A.
    BIOFABRICATION, 2014, 6 (03)
  • [5] 3D bioprinting of cell-laden scaffolds for intervertebral disc regeneration
    Hu, Duo
    Wu, Dongwei
    Huang, Lin
    Jiao, Yanpeng
    Li, Lihua
    Lu, Lu
    Zhou, Changren
    MATERIALS LETTERS, 2018, 223 : 219 - 222
  • [6] 3D bioprinting of cell-laden hydrogels for advanced tissue engineering
    Blaeser, Andreas
    Campos, Daniela Filipa Duarte
    Fischer, Horst
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2017, 2 : 58 - 66
  • [7] 3D bioprinting of functional cell -laden bioinks and its application for cell -alignment and maturation
    Kim, WonJin
    Kim, GeunHyung
    APPLIED MATERIALS TODAY, 2020, 19
  • [8] 3D Bioprinting of Low-Concentration Cell-Laden Gelatin Methacrylate (GelMA) Bioinks with a Two-Step Cross-linking Strategy
    Yin, Jun
    Yan, Mengling
    Wang, Yancheng
    Fu, Jianzhong
    Suo, Hairui
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (08) : 6849 - 6857
  • [9] Cryopreserved cell-laden alginate microgel bioink for 3D bioprinting of living tissues
    Jeon, O.
    Lee, Y. B.
    Hinton, T. J.
    Feinberg, A. W.
    Alsberg, E.
    MATERIALS TODAY CHEMISTRY, 2019, 12 : 61 - 70
  • [10] Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds
    Deo, Kaivalya A.
    Singh, Kanwar Abhay
    Peak, Charles W.
    Alge, Daniel L.
    Gaharwar, Akhilesh K.
    TISSUE ENGINEERING PART A, 2020, 26 (5-6) : 318 - 338