Species-level classification of the vaginal microbiome

被引:129
作者
Fettweis, Jennifer M. [1 ,2 ]
Serrano, Myrna G. [1 ,2 ]
Sheth, Nihar U. [2 ]
Mayer, Carly M. [1 ]
Glascock, Abigail L. [1 ]
Brooks, J. Paul [2 ,3 ]
Jefferson, Kimberly K. [1 ]
Buck, Gregory A. [1 ,2 ]
机构
[1] Virginia Commonwealth Univ, Dept Microbiol & Immunol, Richmond, VA 23298 USA
[2] Virginia Commonwealth Univ, Ctr Study Biol Complex, Richmond, VA 23284 USA
[3] Virginia Commonwealth Univ, Dept Stat Sci & Operat Res, Richmond, VA 23284 USA
来源
BMC GENOMICS | 2012年 / 13卷
关键词
L.-GASSERI; BACTERIA; IDENTIFICATION; SEQUENCES; DATABASE; TIME; PCR;
D O I
10.1186/1471-2164-13-S8-S17
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: The application of next-generation sequencing to the study of the vaginal microbiome is revealing the spectrum of microbial communities that inhabit the human vagina. High-resolution identification of bacterial taxa, minimally to the species level, is necessary to fully understand the association of the vaginal microbiome with bacterial vaginosis, sexually transmitted infections, pregnancy complications, menopause, and other physiological and infectious conditions. However, most current taxonomic assignment strategies based on metagenomic 16S rDNA sequence analysis provide at best a genus-level resolution. While surveys of 16S rRNA gene sequences are common in microbiome studies, few well-curated, body-site-specific reference databases of 16S rRNA gene sequences are available, and no such resource is available for vaginal microbiome studies. Results: We constructed the Vaginal 16S rDNA Reference Database, a comprehensive and non-redundant database of 16S rDNA reference sequences for bacterial taxa likely to be associated with vaginal health, and we developed STIRRUPS, a new method that employs the USEARCH algorithm with a curated reference database for rapid species-level classification of 16S rDNA partial sequences. The method was applied to two datasets of V1-V3 16S rDNA reads: one generated from a mock community containing DNA from six bacterial strains associated with vaginal health, and a second generated from over 1,000 mid-vaginal samples collected as part of the Vaginal Human Microbiome Project at Virginia Commonwealth University. In both datasets, STIRRUPS, used in conjunction with the Vaginal 16S rDNA Reference Database, classified more than 95% of processed reads to a species-level taxon using a 97% global identity threshold for assignment. Conclusions: This database and method provide accurate species- level classifications of metagenomic 16S rDNA sequence reads that will be useful for analysis and comparison of microbiome profiles from vaginal samples. STIRRUPS can be used to classify 16S rDNA sequence reads from other ecological niches if an appropriate reference database of 16S rDNA sequences is available.
引用
收藏
页数:9
相关论文
共 32 条
  • [1] QIIME allows analysis of high-throughput community sequencing data
    Caporaso, J. Gregory
    Kuczynski, Justin
    Stombaugh, Jesse
    Bittinger, Kyle
    Bushman, Frederic D.
    Costello, Elizabeth K.
    Fierer, Noah
    Pena, Antonio Gonzalez
    Goodrich, Julia K.
    Gordon, Jeffrey I.
    Huttley, Gavin A.
    Kelley, Scott T.
    Knights, Dan
    Koenig, Jeremy E.
    Ley, Ruth E.
    Lozupone, Catherine A.
    McDonald, Daniel
    Muegge, Brian D.
    Pirrung, Meg
    Reeder, Jens
    Sevinsky, Joel R.
    Tumbaugh, Peter J.
    Walters, William A.
    Widmann, Jeremy
    Yatsunenko, Tanya
    Zaneveld, Jesse
    Knight, Rob
    [J]. NATURE METHODS, 2010, 7 (05) : 335 - 336
  • [2] The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information
    Chen, Tsute
    Yu, Wen-Han
    Izard, Jacques
    Baranova, Oxana V.
    Lakshmanan, Abirami
    Dewhirst, Floyd E.
    [J]. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2010, : baq013
  • [3] The Ribosomal Database Project: improved alignments and new tools for rRNA analysis
    Cole, J. R.
    Wang, Q.
    Cardenas, E.
    Fish, J.
    Chai, B.
    Farris, R. J.
    Kulam-Syed-Mohideen, A. S.
    McGarrell, D. M.
    Marsh, T.
    Garrity, G. M.
    Tiedje, J. M.
    [J]. NUCLEIC ACIDS RESEARCH, 2009, 37 : D141 - D145
  • [4] Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners
    De Backer, Ellen
    Verhelst, Rita
    Verstraelen, Hans
    Alqumber, Mohammed A.
    Burton, Jeremy P.
    Tagg, John R.
    Temmerman, Marleen
    Vaneechoutte, Mario
    [J]. BMC MICROBIOLOGY, 2007, 7 (1)
  • [5] Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB
    DeSantis, T. Z.
    Hugenholtz, P.
    Larsen, N.
    Rojas, M.
    Brodie, E. L.
    Keller, K.
    Huber, T.
    Dalevi, D.
    Hu, P.
    Andersen, G. L.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (07) : 5069 - 5072
  • [6] The Human Oral Microbiome
    Dewhirst, Floyd E.
    Chen, Tuste
    Izard, Jacques
    Paster, Bruce J.
    Tanner, Anne C. R.
    Yu, Wen-Han
    Lakshmanan, Abirami
    Wade, William G.
    [J]. JOURNAL OF BACTERIOLOGY, 2010, 192 (19) : 5002 - 5017
  • [7] Eddy S R, 1995, Proc Int Conf Intell Syst Mol Biol, V3, P114
  • [8] MUSCLE: multiple sequence alignment with high accuracy and high throughput
    Edgar, RC
    [J]. NUCLEIC ACIDS RESEARCH, 2004, 32 (05) : 1792 - 1797
  • [9] UCHIME improves sensitivity and speed of chimera detection
    Edgar, Robert C.
    Haas, Brian J.
    Clemente, Jose C.
    Quince, Christopher
    Knight, Rob
    [J]. BIOINFORMATICS, 2011, 27 (16) : 2194 - 2200
  • [10] Search and clustering orders of magnitude faster than BLAST
    Edgar, Robert C.
    [J]. BIOINFORMATICS, 2010, 26 (19) : 2460 - 2461