Harmonic sums, Mellin transforms and integrals

被引:371
作者
Vermaseren, JAM [1 ]
机构
[1] Univ Autonoma Madrid, Dept Fis Teor, CXI, E-28034 Madrid, Spain
[2] NIKHEF H, NL-1009 DB Amsterdam, Netherlands
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1999年 / 14卷 / 13期
关键词
D O I
10.1142/S0217751X99001032
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This paper describes algorithms to deal with nested symbolic sums over combinations of harmonic series, binomial coefficients and denominators. In addition it treats Merlin transforms and the inverse Mellin transformation for functions that are encountered in Feynman diagram calculations. Together with results for the values of the higher harmonic series at infinity the presented algorithms can be used for the symbolic evaluation of whole classes of integrals that were thus far intractable. Also many of the sums that had to be evaluated seem to involve new results. Most of the algorithms have been programmed in the language of FORM. The resulting set of procedures is called SUMMER.
引用
收藏
页码:2037 / 2076
页数:40
相关论文
共 24 条
[1]  
Akhiezer N. I., 1965, LECT APPROXIMATION T
[2]  
AKHIEZER NI, 1962, SOME QUESTIONS THEOR
[3]  
[Anonymous], 1992, 1 EUR C MATH PAR 199
[4]  
[Anonymous], 1994, FDN COMPUTER SCI
[5]   ELECTRON FORM-FACTORS UP TO FOURTH ORDER .1. [J].
BARBIERI, R ;
MIGNACO, JA ;
REMIDDI, E .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1972, A 11 (04) :824-+
[6]  
Borwein J.M., HEPTH9611004
[7]  
BORWEIN JM, 1997, ELECT J COMBINATORIC, V4
[8]   Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops [J].
Broadhurst, DJ ;
Kreimer, D .
PHYSICS LETTERS B, 1997, 393 (3-4) :403-412
[9]   TABLE OF INTEGRALS AND FORMULAS FOR FEYNMAN DIAGRAM CALCULATIONS [J].
DEVOTO, A ;
DUKE, DW .
RIVISTA DEL NUOVO CIMENTO, 1984, 7 (06) :1-39
[10]  
DOETSCH G, 1950, HDB LAPLACE TRANSFOR, V1