On inverse spectral theory for singularly perturbed operators: point spectrum

被引:4
作者
Albeverio, S
Konstantinov, A
Koshmanenko, V
机构
[1] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[2] SFB 611, Bonn, Germany
[3] BiBoS, Bonn, Germany
[4] IZKS, Bonn, Germany
[5] CERFIM, Locarno, Switzerland
[6] ACC Arch, Mendrisio, Switzerland
[7] Kyiv Univ, Dept Math, UA-01033 Kiev, Ukraine
[8] Natl Acad Sci Ukraine, Inst Math, UA-01601 Kiev, Ukraine
关键词
D O I
10.1088/0266-5611/21/6/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be a self-adjoint operator in a separable Hilbert space H. Let <{psi(k) : k >= 1}under bar> be a given (finite or infinite) orthonormal system such that span {psi(k) : k >= 1} boolean AND dom (A) = {0} and let Lambda : = {lambda(k) : k >= 1} be an arbitrary sequence of real numbers. Conditions for the existence of a pure singular perturbation (A) over tilde of A solving the inverse eigenvalue problem (A) over tilde psi(k) = lambda(k)psi(k), k >= 1 are given.
引用
收藏
页码:1871 / 1878
页数:8
相关论文
共 13 条
  • [1] SQUARE POWERS OF SINGULARLY PERTURBED OPERATORS
    ALBEVERIO, S
    KARWOWSKI, W
    KOSHMANENKO, V
    [J]. MATHEMATISCHE NACHRICHTEN, 1995, 173 : 5 - 24
  • [2] On inverse spectral theory for self-adjoint extensions: Mixed types of spectra
    Albeverio, S
    Brasche, J
    Neidhardt, H
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) : 130 - 173
  • [3] ALBEVERIO S, 2003, 611 SFB
  • [4] ALBEVERIO S, 2000, SINGULAR PERTURBATIO
  • [5] ALBEVERIO S, 2003, 611 SFB U BONN
  • [6] BEREZANSKY YM, 1968, EXPANSION EIGENVECTO
  • [7] ON THE POINT SPECTRUM OF SELF-ADJOINT EXTENSIONS
    BRASCHE, J
    NEIDHARDT, H
    WEIDMANN, J
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (02) : 343 - 355
  • [8] Weyl function and spectral properties of self-adjoint extensions
    Brasche, JF
    Malamud, M
    Neidhardt, H
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 43 (03) : 264 - 289
  • [9] GENERALIZED RESOLVENTS AND THE BOUNDARY-VALUE-PROBLEMS FOR HERMITIAN OPERATORS WITH GAPS
    DERKACH, VA
    MALAMUD, MM
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (01) : 1 - 95
  • [10] Dudkin M. E., 2003, UKR MATH J, V55, p[1269, 1532]