Classification and decomposition of quantum Markov semigroups

被引:30
作者
Umanitá, V [1 ]
机构
[1] Univ Genoa, Dipartimento Matemat, Genoa, Italy
关键词
Stochastic Process; Probability Theory; Mathematical Biology; Markov Semigroup; Quantum Markov Semigroup;
D O I
10.1007/s00440-005-0450-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that a QMS on a sigma-finite von Neumann algebra A can be decomposed as the sum of several "sub"-semigroups corresponding to transient and recurrent projections. We discuss two applications to physical models.
引用
收藏
页码:603 / 623
页数:21
相关论文
共 17 条
  • [1] Onsager relation with the "slow" degrees of the field in the white noise equation based on stochastic limit
    Accardi, L
    Imafuku, K
    Lu, YG
    [J]. FUNDAMENTAL ASPECTS OF QUANTUM PHYSICS, 2003, 17 : 1 - 23
  • [2] [Anonymous], 1993, QUANTUM PROBABILITY, DOI DOI 10.1007/978-3-662-21558-6
  • [3] RELATIONAL PROPERTIES OF RECURRENT MARKOV PROCESSES
    AZEMA, J
    DUFLO, M
    REVUZ, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4): : 286 - &
  • [4] Barchielli A., 2003, CONTINUAL MEASUREMEN
  • [5] Bratteli O., 1979, Operator Algebras and Quantum Statistical Mechanics, V1
  • [6] CARBONE R, 2000, THESIS U MILANO
  • [7] DELLACHERIE C, 1987, PROBABILITES POTENTI
  • [8] Dixmier J., 1969, CAHIERS SCI
  • [9] SPECTRAL PROPERTIES OF POSITIVE MAPS ON CSTAR-ALGEBRAS
    EVANS, DE
    HOEGHKROHN, R
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1978, 17 (APR): : 345 - 355
  • [10] Transience and recurrence of quantum Markov semigroups
    Fagnola, F
    Rebolledo, R
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (02) : 289 - 306