On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well

被引:26
作者
Coron, JM
机构
[1] Inst Univ France, F-91405 Orsay, France
[2] Univ Paris 11, Dept Math, F-91405 Orsay, France
关键词
D O I
10.1016/j.crma.2005.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a quantum charged particle in a one-dimensional infinite square potential well moving along a line. We control the acceleration of the potential well. The local controllability in large time of this nonlinear control system along the ground state trajectory has been proved recently. We prove that this local controllability does not hold in small time, even if the Schrodinger equation has an infinite speed of propagation. To cite this article: J.-M. Coron, C R. Acad. Sci. Paris, Ser. 1342 (2006). (c) 2005 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1996, ESAIM CONTR OPTIM CA, DOI DOI 10.1051/COCV:1996102
[2]   Local controllability of a 1-D Schrodinger equation [J].
Beauchard, K .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07) :851-956
[3]  
BEAUCHARD K, 2005, IN PRSS J FUNCT ANAL
[4]  
Coron JM, 2004, J EUR MATH SOC, V6, P367
[5]   Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations [J].
Coron, JM .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 :513-554
[6]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312
[7]  
Coron JM, 1996, RUSS J MATH PHYS, V4, P429
[8]  
Coron JM, 1996, J MATH PURE APPL, V75, P155
[9]  
CORON JM, 2003, 18 C EC DIF APL
[10]   Exact controllability of the Navier-Stokes and Boussinesq equations [J].
Fursikov, AV ;
Imanuvilov, OY .
RUSSIAN MATHEMATICAL SURVEYS, 1999, 54 (03) :565-618