LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents

被引:48
作者
Santillan, Cynthia [1 ]
Fowler, Kathryn [2 ]
Kono, Yuko [3 ]
Chernyak, Victoria [4 ]
机构
[1] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA 92103 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO USA
[3] Univ Calif San Diego, Dept Radiol, Dept Med, San Diego, CA 92103 USA
[4] Montefiore Med Ctr, Dept Radiol, 111 E 210th St, Bronx, NY 10467 USA
关键词
Hepatocellular carcinoma; Liver; MRI; CT; LI-RADS; CONTRAST-ENHANCED CT; HEPATOCELLULAR-CARCINOMA; INTRAHEPATIC CHOLANGIOCARCINOMA; COMPUTED-TOMOGRAPHY; HEPATIC NODULES; GROWTH-RATE; DIAGNOSIS; CIRRHOSIS; PATTERNS; LIVER;
D O I
10.1007/s00261-017-1291-4
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The Liver Imaging Reporting and Data System (LI-RADS) was designed to standardize the interpretation and reporting of observations seen on studies performed in patients at risk for development of hepatocellular carcinoma (HCC). The LI-RADS algorithm guides radiologists through the process of categorizing observations on a spectrum from definitely benign to definitely HCC. Major features are the imaging features used to categorize observations as LI-RADS 3 (intermediate probability of malignancy), LIRADS 4 (probably HCC), and LI-RADS 5 (definite HCC). Major features include arterial phase hyperenhancement, washout appearance, enhancing capsule appearance, size, and threshold growth. Observations that have few major criteria are assigned lower categories than those that have several, with the goal of preserving high specificity for the LR-5 category of Definite HCC. The goal of this paper is to discuss LI-RADS major features, including definitions, rationale for selection as major features, and imaging examples.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [31] Optional MRI sequences for LI-RADS: why, what, and how?
    Omar Kamal
    Ethan Sy
    Victoria Chernyak
    Ayushi Gupta
    Vahid Yaghmai
    Kathryn Fowler
    Dimitrios Karampinos
    Krishna Shanbhogue
    Frank H. Miller
    Avinash Kambadakone
    Alice Fung
    Abdominal Radiology, 2023, 48 : 519 - 531
  • [32] LI-RADS ancillary features favoring benignity: is there a role in LR-5 observations?
    Cannella, Roberto
    Vernuccio, Federica
    Antonucci, Michela
    Gagliano, Domenico Salvatore
    Matteini, Francesco
    Midiri, Massimo
    Brancatelli, Giuseppe
    EUROPEAN RADIOLOGY, 2022, 32 (03) : 1804 - 1812
  • [33] A Multicenter Assessment of Interreader Reliability of LI-RADS Version 2018 for MRI and CT
    Hong, Cheng William
    Chernyak, Victoria
    Choi, Jin-Young
    Lee, Sonia
    Potu, Chetan
    Delgado, Timoteo
    Wolfson, Tanya
    Gamst, Anthony
    Birnbaum, Jason
    Kampalath, Rony
    Lall, Chandana
    Lee, James T.
    Owen, Joseph W.
    Aguirre, Diego A.
    Mendiratta-Lala, Mishal
    Davenport, Matthew S.
    Masch, William
    Roudenko, Alexandra
    Lewis, Sara C.
    Kierans, Andrea Siobhan
    Hecht, Elizabeth M.
    Bashir, Mustafa R.
    Brancatelli, Giuseppe
    Douek, Michael L.
    Ohliger, Michael A.
    Tang, An
    Cerny, Milena
    Fung, Alice
    Costa, Eduardo A.
    Corwin, Michael T.
    McGahan, John P.
    Kalb, Bobby
    Elsayes, Khaled M.
    Surabhi, Venkateswar R.
    Blair, Katherine
    Marks, Robert M.
    Horvat, Natally
    Best, Shaun
    Ash, Ryan
    Ganesan, Karthik
    Kagay, Christopher R.
    Kambadakone, Avinash
    Wang, Jin
    Cruite, Irene
    Bijan, Bijan
    Goodwin, Mark
    Cunha, Guilherme Moura
    Tamayo-Murillo, Dorathy
    Fowler, Kathryn J.
    Sirlin, Claude B.
    RADIOLOGY, 2023, 307 (05)
  • [34] LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound
    Avinash R. Kambadakone
    Alice Fung
    Rajan T. Gupta
    Thomas A. Hope
    Kathryn J. Fowler
    Andrej Lyshchik
    Karthik Ganesan
    Vahid Yaghmai
    Alexander R. Guimaraes
    Dushyant V. Sahani
    Frank H. Miller
    Abdominal Radiology, 2018, 43 : 56 - 74
  • [35] LI-RADS technical requirements for CT, MRI, and contrast-enhanced ultrasound
    Kambadakone, Avinash R.
    Fung, Alice
    Gupta, Rajan T.
    Hope, Thomas A.
    Fowler, Kathryn J.
    Lyshchik, Andrej
    Ganesan, Karthik
    Yaghmai, Vahid
    Guimaraes, Alexander R.
    Sahani, Dushyant V.
    Miller, Frank H.
    ABDOMINAL RADIOLOGY, 2018, 43 (01) : 56 - 74
  • [36] Development of a deep-learning model for classification of LI-RADS major features by using subtraction images of MRI: a preliminary study
    Junghoan Park
    Jae Seok Bae
    Jong-Min Kim
    Joseph Nathanael Witanto
    Sang Joon Park
    Jeong Min Lee
    Abdominal Radiology, 2023, 48 : 2547 - 2556
  • [37] CT/MRI LI-RADS 2024 Update: Treatment Response Assessment
    Aslam, Anum
    Chernyak, Victoria
    Miller, Frank H.
    Bashir, Mustafa
    Do, Richard
    Sirlin, Claude
    Lewandowski, Robert J.
    Kim, Charles Y.
    Kielar, Ania Zofia
    Kambadakone, Avinash R.
    Yarmohammadi, Hooman
    Kim, Edward
    Owen, Dawn
    Charalel, Resmi A.
    Shenoy-Bhangle, Anuradha
    Burke, Lauren M.
    Mendiratta-Lala, Mishal
    RADIOLOGY, 2024, 313 (02)
  • [38] How to Use LI-RADS to Report Liver CT and MRI Observations
    Cunha, Guilherme M.
    Fowler, Kathryn J.
    Roudenko, Alexandra
    Taouli, Bachir
    Fung, Alice W.
    Elsayes, Khaled M.
    Marks, Robert M.
    Cruite, Irene
    Horvat, Natally
    Chernyak, Victoria
    Sirlin, Claude B.
    Tang, An
    RADIOGRAPHICS, 2021, 41 (05) : 1352 - 1367
  • [39] LI-RADS ancillary features on contrast-enhanced ultrasonography
    Dietrich, Christoph F.
    Dong, Yi
    Kono, Yuko
    Caraiani, Cosmin
    Sirlin, Claude B.
    Cui, Xin-Wu
    Tang, An
    ULTRASONOGRAPHY, 2020, 39 (03) : 221 - 228
  • [40] Combination of CT/MRI LI-RADS with CEUS can improve the diagnostic performance for HCCs
    Zhou, Yan
    Ding, Jianmin
    Qin, Zhengyi
    Long, Lei
    Zhang, Xiang
    Wang, Fengmei
    Chen, Chen
    Wang, Yandong
    Zhou, Hongyu
    Jing, Xiang
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 149