Rationally designed ultrathin Ni(OH)2/titanate nanosheet heterostructure for photocatalytic CO2 reduction

被引:11
|
作者
Liao, Wanru [4 ]
Lu, Suwei [1 ]
Chen, Weihang [4 ]
Zhu, Shuying [2 ]
Xia, Yuzhou [3 ]
Yang, Min-Quan [1 ]
Liang, Shijing [4 ]
机构
[1] Fujian Normal Univ, Coll Environm Sci & Engn, Fujian Key Lab Pollut Control & Resource Reuse, Fuzhou 350007, Peoples R China
[2] Fuzhou Univ, Coll Chem, Fuzhou 350108, Peoples R China
[3] Ningde Normal Univ, Prov Univ Key Lab Green Energy & Environm Catalysi, Ningde 352100, Peoples R China
[4] Fuzhou Univ, Natl Engn Res Ctr Chem Fertilizer Catalyst, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
Titanate nanosheet; Ni(OH)2; Photosensitizer; CO2; reduction; X-RAY PHOTOELECTRON; TIO2; NICKEL; HETEROJUNCTION; NANOCATALYST; TEMPERATURE; CH4;
D O I
10.1016/j.gce.2021.12.006
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Dye-sensitized photocatalysis has been extensively studied for photocatalytic solar energy conversion due to the advantage in capturing long-wavelength photons with a high absorption coefficient. The rational integration of photosensitizer with semiconductor and cocatalyst to collaboratively operate in one system is highly desired. Here, we fabricate a Ni(OH)2-loaded titanate nanosheet (Ni(OH)2/H2Ti6O13) composite for high-performance dye-sensitized photocatalytic CO2 reduction. The ultrathin H2Ti6O13 nanosheets with negative surface charge provide an excellent support to anchor the dye photosensitizer, while the loaded Ni(OH)2 serves as an adsorbent of CO2 and electron sink of photoelectrons. As such, the photoelectrons derived from the [Ru(bpy)3]Cl2 sensitizer can be targeted transfer to the Ni(OH)2 active sites via the H2Ti6O13 nanosheets linker. A high CO production rate of 1801 & mu;mol g-1 h-1 is obtained over the optimal Ni(OH)2/H2Ti6O13, while the pure H2Ti6O13 shows significantly lower CO2 reduction performance. The work is anticipated to trigger more research attention on the rational design and synthesis of earth-abundant transition metal-based cocatalysts decorated on ultrathin 2D platforms for artificially photocatalytic CO2 reduction.
引用
收藏
页码:240 / 249
页数:10
相关论文
共 50 条
  • [41] Photocatalytic CO2 reduction
    Fang, Siyuan
    Rahaman, Motiar
    Bharti, Jaya
    Reisner, Erwin
    Robert, Marc
    Ozin, Geoffrey A.
    Hu, Yun Hang
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [42] Progress in the Construction of Metal Oxide Heterojunctions and Their Application in Photocatalytic CO2 Reduction
    Li Mengdie
    Wang Zumin
    Qi Jian
    Yu Ranbo
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2023, 44 (10):
  • [43] Rationally designed hierarchical hollow CuS/CdIn2S4 heterostructure nanoboxes for boosted photoreduction of CO2
    Hou, Wentao
    Xia, Puyue
    Zhuang, Chen
    Liu, Qi
    Cheng, Tingting
    Zheng, Yubin
    Zhu, Yanjun
    Wei, Yiqing
    Chi, Haoqiang
    Zhou, Yong
    Zou, Zhigang
    NANOSCALE, 2024, 16 (41) : 19344 - 19354
  • [44] Hollow Structure for Photocatalytic CO2 Reduction
    Wang, Zhiliang
    Akter Monny, Sabiha
    Wang, Lianzhou
    CHEMNANOMAT, 2020, 6 (06) : 881 - 888
  • [45] Porphyrins Acting as Photosensitizers in the Photocatalytic CO2 Reduction Reaction
    Kuramochi, Yusuke
    Satake, Akiharu
    CATALYSTS, 2023, 13 (02)
  • [46] Heterogenization of a macrocyclic cobalt complex for photocatalytic CO2 reduction
    Jin, Tong
    Liu, Chao
    Li, Gonghu
    JOURNAL OF COORDINATION CHEMISTRY, 2016, 69 (11-13) : 1748 - 1758
  • [47] Effect of silver doping on the TiO2 for photocatalytic reduction of CO2
    Koci, K.
    Mateju, K.
    Obalova, L.
    Krejcikova, S.
    Lacny, Z.
    Placha, D.
    Capek, L.
    Hospodkova, A.
    Solcova, O.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 96 (3-4) : 239 - 244
  • [48] Photocatalytic reduction of CO2 over TiO2 based catalysts
    Koci, Kamila
    Obalova, Lucie
    Lacny, Zdenek
    CHEMICAL PAPERS, 2008, 62 (01): : 1 - 9
  • [49] Ni(OH)2-Decorated Zn3In2S6@ZIF-L Dual-S-Scheme Heterostructure for Cooperative Photocatalytic CO2 Reduction Coupling with Benzyl Alcohol Oxidation
    Chen, Jinlong
    Mu, Manman
    Wang, Zigeng
    Ma, Mingxing
    Qaraah, Fahim A.
    Yin, Xiaohong
    Bai, Guoyi
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (50): : 18161 - 18173
  • [50] Photocatalytic CO2 reduction over mesoporous TiO2 photocatalysts
    Reli, Martin
    Nadrah, Peter
    Edelmannova, Miroslava Filip
    Ricka, Rudolf
    Skapin, Andrijana Sever
    Stangar, Urska Lavrencic
    Koci, Kamila
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2024, 169