SDF-SLAM: Semantic Depth Filter SLAM for Dynamic Environments

被引:31
作者
Cui, Linyan [1 ]
Ma, Chaowei [1 ]
机构
[1] Beihang Univ, Sch Astronaut, Image Proc Ctr, Beijing 102206, Peoples R China
来源
IEEE ACCESS | 2020年 / 8卷 / 08期
基金
中国国家自然科学基金;
关键词
Semantics; Simultaneous localization and mapping; Visualization; Feature extraction; Geometry; Optical filters; Information filtering; Dynamic scenes; depth filter; semantic segmentation; simultaneous localization and mapping;
D O I
10.1109/ACCESS.2020.2994348
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Simultaneous Localization and Mapping (SLAM) has been widely applied in computer vision and robotics. For the dynamic environments which are very common in the real word, traditional visual SLAM system faces significant drop in localization and mapping accuracy due to the static world assumption. Recently, the semantic visual SLAM systems towards dynamic scenes have gradually attracted more and more attentions, which use the semantic information of images to help remove dynamic feature points. Existing semantic visual SLAM systems commonly detect the dynamic feature points by the semantic prior, geometry constraint or the combine of them, then map points corresponding to dynamic feature points are removed. In the visual SLAM framework, pose calculation is essentially around the 3D map points, so the essence of improving the accuracy of visual SLAM system is to build a more accurate and reliable map. These existing semantic visual SLAM systems are actually adopting an indirect way to acquire reliable map points, and several drawbacks exist. In this paper, we present SDF-SLAM: Semantic Depth Filter SLAM, a visual semantic SLAM system towards dynamic environments, which utilizes the technology of depth filter to directly judge whether a 3D map point is dynamic or not. First, the semantic information is integrated into the original pure geometry SLAM system by the semantic optical flow method to perform reliable map initialization. Second, design the semantic depth filter that satisfies the Gaussian Uniform mixture distribution to describe the inverse depth of each map point. Third, updating the inverse depth of 3D map point in a Bayesian estimation framework, and dividing the 3D map point into active one or inactive one. Last, only the active map points are utilized to achieve robust camera pose tracking. Experiments on TUM dataset demonstrate that our approach outperforms original ORB-SLAM2 and other state-of-the-art semantic SLAM systems.
引用
收藏
页码:95301 / 95311
页数:11
相关论文
共 28 条
  • [1] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [2] DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes
    Bescos, Berta
    Facil, Jose M.
    Civera, Javier
    Neira, Jose
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (04): : 4076 - 4083
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] MonoSLAM: Real-time single camera SLAM
    Davison, Andrew J.
    Reid, Ian D.
    Molton, Nicholas D.
    Stasse, Olivier
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) : 1052 - 1067
  • [5] DeTone Daniel, 2017, ARXIV170707410
  • [6] Direct Sparse Odometry
    Engel, Jakob
    Koltun, Vladlen
    Cremers, Daniel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (03) : 611 - 625
  • [7] LSD-SLAM: Large-Scale Direct Monocular SLAM
    Engel, Jakob
    Schoeps, Thomas
    Cremers, Daniel
    [J]. COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 834 - 849
  • [8] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [9] Forster C, 2014, IEEE INT CONF ROBOT, P15, DOI 10.1109/ICRA.2014.6906584
  • [10] Dynamic Scene Semantics SLAM Based on Semantic Segmentation
    Han, Shuangquan
    Xi, Zhihong
    [J]. IEEE ACCESS, 2020, 8 : 43563 - 43570