On the global dynamics of a finance model

被引:8
|
作者
Llibre, Jaume [1 ]
Valls, Claudia [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain
[2] Univ Lisbon, Inst Super Tecn, Dept Matemat, Av Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Darboux invariant; Finance model; Poincare compactification; Global dynamics; FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS; STATE-SPACE;
D O I
10.1016/j.chaos.2017.10.026
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently several works have studied the following model of finance <(x)over dot> = z + (y - a)x, <(y)over dot> = 1 - by - x(2), <(z)over dot> = - x - cz, where a, b and c are positive real parameters. We study the global dynamics of this polynomial differential system, and in particular for a one-dimensional parametric subfamily we show that there is an equilibrium point which is a global attractor. (c) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [41] Campaign finance goes global
    Bussey, J
    FOREIGN POLICY, 2000, (118) : 74 - +
  • [42] Islamic finance in the global economy
    Henry, CM
    MIDDLE EAST JOURNAL, 2001, 55 (04): : 701 - 702
  • [43] European pensions and global finance
    Seo, B
    REGIONAL STUDIES, 2004, 38 (07) : 859 - 860
  • [44] Global Finance and Social Europe
    Stockhammer, Engelbert
    REVIEW OF POLITICAL ECONOMY, 2012, 24 (04) : 674 - 676
  • [45] Global Finance and Social Europe
    Niechoj, Torsten
    EUROPEAN JOURNAL OF ECONOMICS AND ECONOMIC POLICIES-INTERVENTION, 2010, 7 (01): : 216 - 219
  • [46] Global Dynamics of a Breast Cancer Competition Model
    Abernathy, Kristen
    Abernathy, Zachary
    Baxter, Arden
    Stevens, Meghan
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2020, 28 (04) : 791 - 805
  • [47] MATHEMATICAL MODEL OF MULTIFRACTAL DYNAMICS AND GLOBAL WARMING
    Kudinov, A. N.
    Krylova, O. I.
    Tsvetkov, V. P.
    Tsvetkov, I. V.
    EURASIAN MATHEMATICAL JOURNAL, 2014, 5 (02): : 52 - 59
  • [48] Global Dynamics of an Elliptically Excited Pendulum Model
    Zhou, Liangqiang
    Chen, Fangqi
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [49] GLOBAL-MODEL FOR DYNAMICS OF TOKAMAK DISCHARGES
    COTSAFTIS, M
    KLEIN, HH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 819 - 819
  • [50] Global Langevin model of multidimensional biomolecular dynamics
    Schaudinnus, Norbert
    Lickert, Benjamin
    Biswas, Mithun
    Stock, Gerhard
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (18):