Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [41] The set of numerical semigroups of a given genus
    Blanco, V.
    Rosales, J. C.
    SEMIGROUP FORUM, 2012, 85 (02) : 255 - 267
  • [42] Ratio-Covarieties of Numerical Semigroups
    Moreno-Frias, Maria angeles
    Rosales, Jose Carlos
    AXIOMS, 2024, 13 (03)
  • [43] The Frobenius problem for a class of numerical semigroups
    Gu, Ze
    Tang, Xilin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (05) : 1335 - 1347
  • [44] The Frobenius problem for repunit numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    The Ramanujan Journal, 2016, 40 : 323 - 334
  • [45] NUMERICAL SEMIGROUPS THAT ARE FRACTIONS OF NUMERICAL SEMIGROUPS OF MAXIMAL EMBEDDING DIMENSION
    Smith, Harold J.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2010, 17 (01): : 69 - 96
  • [46] Pseudo-symmetric modular diophantine inequalities
    Rosales, JC
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (04): : 565 - 570
  • [47] Duality relation for the Hilbert series of almost symmetric numerical semigroups
    Leonid G. Fel
    Israel Journal of Mathematics, 2011, 185 : 413 - 444
  • [48] On parametrized families of numerical semigroups
    Kerstetter, Franklin
    O'Neill, Christopher
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4698 - 4717
  • [49] BOUNDS FOR THE GENUS OF NUMERICAL SEMIGROUPS
    Leher, Eli
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (05) : 827 - 834
  • [50] Position Vectors of Numerical Semigroups
    Bryant, Lance
    Hamblin, James
    SEMIGROUP FORUM, 2015, 91 (01) : 28 - 38