Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [31] Numerical semigroups, polyhedra, and posets II: locating certain families of semigroups
    Autry, Jackson
    Ezell, Abigail
    Gomes, Tara
    O'Neill, Christopher
    Preuss, Christopher
    Saluja, Tarang
    Davila, Eduardo Torres
    ADVANCES IN GEOMETRY, 2022, 22 (01) : 33 - 48
  • [32] Geometrical illustration of numerical semigroups and of some of their invariants
    Kunz, E.
    Waldi, R.
    SEMIGROUP FORUM, 2014, 89 (03) : 664 - 691
  • [33] The genus, Frobenius number and pseudo-Frobenius numbers of numerical semigroups of type 2
    Robles-Perez, Aureliano M.
    Carlos Rosales, Jose
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (05) : 1081 - 1090
  • [34] Characterization of perfect numerical semigroups in terms of pseudo-Frobenius numbers
    Li, Meng
    Guo, Hui
    Tian, Ya
    HELIYON, 2024, 10 (13)
  • [35] AN APPROACH TO NUMERICAL SEMIGROUPS
    Ilhan, Sedat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (03): : 411 - 415
  • [36] The Frobenius problem for Mersenne numerical semigroups
    J. C. Rosales
    M. B. Branco
    D. Torrão
    Mathematische Zeitschrift, 2017, 286 : 741 - 749
  • [37] The set of numerical semigroups of a given genus
    V. Blanco
    J. C. Rosales
    Semigroup Forum, 2012, 85 : 255 - 267
  • [38] The Frobenius problem for Mersenne numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    Torrao, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (1-2) : 741 - 749
  • [39] Numerical semigroups of small and large type
    Singhal, Deepesh
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2021, 31 (05) : 883 - 902
  • [40] NUMERICAL SEMIGROUPS BOUNDED BY A CYCLIC MONOID
    Moreno-Frias, M. A.
    Rosales, J. C.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (03): : 1219 - 1231