Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [21] Numerical semigroups generated by quadratic sequences
    Mara Hashuga
    Megan Herbine
    Alathea Jensen
    Semigroup Forum, 2022, 104 : 330 - 357
  • [22] Numerical semigroups that differ from a symmetric numerical semigroup in one element
    Rosales, J. C.
    ALGEBRA COLLOQUIUM, 2008, 15 (01) : 23 - 32
  • [23] One half of almost symmetric numerical semigroups
    F. Strazzanti
    Semigroup Forum, 2015, 91 : 463 - 475
  • [24] The Frobenius number of a family of numerical semigroups with embedding dimension 5
    Herzinger, Kurt
    McLaughlin, Emelia
    Trimber, Julie
    INVOLVE, A JOURNAL OF MATHEMATICS, 2023, 16 (05): : 833 - 847
  • [25] One half of almost symmetric numerical semigroups
    Strazzanti, F.
    SEMIGROUP FORUM, 2015, 91 (02) : 463 - 475
  • [26] The Frobenius problem for numerical semigroups
    Rosales, J. C.
    Branco, M. B.
    JOURNAL OF NUMBER THEORY, 2011, 131 (12) : 2310 - 2319
  • [27] Parametrizing Arf numerical semigroups
    Garcia-Sanchez, P. A.
    Heredia, B. A.
    Karaka, H. I.
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (11)
  • [28] Almost symmetric numerical semigroups with given Frobenius number and type
    Branco, M. B.
    Ojeda, I
    Rosales, J. C.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (11)
  • [29] Numerical semigroups with concentration two
    Rosales, Jose C.
    Branco, M. B.
    Traesel, Marcio A.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 303 - 313
  • [30] Modularly equidistant numerical semigroups
    ROSALES, Jose Carlos
    BRANCO, Manuel Baptista
    TRAESEL, Marcio Andre
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 288 - 299