Numerical semigroups II: Pseudo-symmetric AA-semigroups

被引:3
|
作者
Garcia-Marco, Ignacio [1 ]
Alfonsin, Jorge L. Ramirez [2 ]
Rodseth, Oystein J. [3 ]
机构
[1] Univ Lyon, LIP, ENS Lyon, CNRS,UCBL,INRIA,UMR 5668, Lyon, France
[2] Univ Montpellier, Inst Montpellierain Alexander Grothendieck, Case Courrier 051,Pl Eugene Bataillon, F-34095 Montpellier 05, France
[3] Univ Bergen, Dept Math, Johs Brunsgt 12, N-5008 Bergen, Norway
关键词
Numerical semigroup; Apery set; Frobenius number; Cohen-Macaulay type; Genus; Pseudo-symmetry; LINEAR DIOPHANTINE PROBLEM; FROBENIUS;
D O I
10.1016/j.jalgebra.2016.09.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the general numerical AA-semigroup, i.e., semigroups consisting of all non-negative integer linear combinations of relatively prime positive integers of the form a, a+d, a+2d,, a+kd, c. We first prove that, in contrast to arbitrary numerical semigroups, there exists an upper bound for the type of AA-semigroups that only depends on the number of generators of the semigroup. We then present two characterizations of pseudo-symmetric AA-semigroups. The first one leads to a polynomial time algorithm to decide whether an AA-semigroup is pseudo-symmetric. The second one gives a method to construct pseudo-symmetric AA-semigroups and provides explicit families of pseudo-symmetric semigroups with arbitrarily large number of generators. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:484 / 498
页数:15
相关论文
共 50 条
  • [1] ON A CLASS OF PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS
    Ilhan, Sedat
    Suer, Meral
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2011, 20 (02): : 225 - 230
  • [2] On the Planarity of Graphs Associated with Symmetric and Pseudo Symmetric Numerical Semigroups
    Rao, Yongsheng
    Binyamin, Muhammad Ahsan
    Aslam, Adnan
    Mehtab, Maria
    Fazal, Shazia
    MATHEMATICS, 2023, 11 (07)
  • [3] CONSTRUCTING ALMOST SYMMETRIC NUMERICAL SEMIGROUPS FROM IRREDUCIBLE NUMERICAL SEMIGROUPS
    Rosales, J. C.
    Garcia-Sanchez, P. A.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (03) : 1362 - 1367
  • [4] Almost symmetric numerical semigroups with high type
    Garcia Sanchez, Pedro A.
    Ojeda, Ignacio
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2499 - 2510
  • [5] p-Numerical semigroups with p-symmetric properties
    Komatsu, Takao
    Ying, Haotian
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (13)
  • [6] Numerical semigroups: Ap,ry sets and Hilbert series
    Alfonsin, Jorge L. Ramirez
    Rodseth, Oystein J.
    SEMIGROUP FORUM, 2009, 79 (02) : 323 - 340
  • [7] Almost symmetric numerical semigroups
    Herzog, Juergen
    Watanabe, Kei-ichi
    SEMIGROUP FORUM, 2019, 98 (03) : 589 - 630
  • [8] p-numerical semigroups with p-symmetric properties, II
    Komatsu, Takao
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [9] On the Frobenius number and genus of a collection of semigroups generalizing repunit numerical semigroups
    Liu, Feihu
    Xin, Guoce
    Ye, Suting
    Yin, Jingjing
    SEMIGROUP FORUM, 2025, : 357 - 383
  • [10] Symmetries on almost symmetric numerical semigroups
    Nari, Hirokatsu
    SEMIGROUP FORUM, 2013, 86 (01) : 140 - 154