Improving the Prediction of Clinical Outcomes from Genomic Data Using Multiresolution Analysis

被引:4
|
作者
Hennings-Yeomans, Pablo H. [1 ]
Cooper, Gregory F. [1 ]
机构
[1] Univ Pittsburgh, Dept Biomed Informat, Pittsburgh, PA 15206 USA
基金
美国国家卫生研究院;
关键词
Human genome; single nucleotide polymorphisms; multiresolution; pattern recognition; wavelets; prediction; clinical outcomes; genomics; SNPs;
D O I
10.1109/TCBB.2012.80
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of patient's future clinical outcome, such as Alzheimer's and cardiac disease, using only genomic information is an open problem. In cases when genome-wide association studies (GWASs) are able to find strong associations between genomic predictors (e. g., SNPs) and disease, pattern recognition methods may be able to predict the disease well. Furthermore, by using signal processing methods, we can capitalize on latent multivariate interactions of genomic predictors. Such an approach to genomic pattern recognition for prediction of clinical outcomes is investigated in this work. In particular, we show how multiresolution transforms can be applied to genomic data to extract cues of multivariate interactions and, in some cases, improve on the predictive performance of clinical outcomes of standard classification methods. Our results show, for example, that an improvement of about 6 percent increase of the area under the ROC curve can be achieved using multiresolution spaces to train logistic regression to predict late-onset Alzheimer's disease (LOAD) compared to logistic regression applied directly on SNP data.
引用
收藏
页码:1442 / 1450
页数:9
相关论文
共 50 条
  • [1] Multiresolution analysis of data on electrical conductivity of soil using wavelets
    Lark, RM
    Kaffka, SR
    Corwin, DL
    JOURNAL OF HYDROLOGY, 2003, 272 (1-4) : 276 - 290
  • [2] Invited review: Genomic analysis of data from physiological studies
    Garrick, D. J.
    Baumgard, L. H.
    Neibergs, H. L.
    JOURNAL OF DAIRY SCIENCE, 2012, 95 (02) : 499 - 507
  • [3] IFGFA: Identification of featured genes from genomic data using factor analysis
    Fu, C. H.
    Deng, S.
    Wu, J. H.
    Wu, X. Q.
    Fu, Z. H.
    Yu, Z. G.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (03)
  • [4] Data monitoring in clinical trials using prediction
    Evans, Scott R.
    Li, Lingling
    Wei, Lj
    DRUG INFORMATION JOURNAL, 2007, 41 (06): : 733 - 742
  • [5] Data Monitoring in Clinical Trials Using Prediction
    Scott R. Evans
    Lingling Li
    L. J. Wei
    Drug information journal : DIJ / Drug Information Association, 2007, 41 : 733 - 742
  • [6] Defining Phenotypes from Clinical Data to Drive Genomic Research
    Robinson, Jamie R.
    Wei, Wei-Qi
    Roden, Dan M.
    Denny, Joshua C.
    ANNUAL REVIEW OF BIOMEDICAL DATA SCIENCE, VOL 1, 2018, 1 : 69 - 92
  • [7] Evaluation of a two-stage framework for prediction using big genomic data
    Jiang, Xia
    Neapolitan, Richard E.
    BRIEFINGS IN BIOINFORMATICS, 2015, 16 (06) : 912 - 921
  • [8] Accessing and utilizing clinical and genomic data from an electronic health record data warehouse
    Cosby G. Arnold
    Brandon Sonn
    Frederick J. Meyers
    Alexis Vest
    Richie Puls
    Estelle Zirkler
    Michelle Edelmann
    Ian M. Brooks
    Andrew A. Monte
    Translational Medicine Communications, 8 (1)
  • [9] Risk stratification in cardiogenic shock: from clinical utility to improving outcomes
    Chioncel, Ovidiu
    Adamo, Marianna
    Bauersachs, Johann
    EUROPEAN JOURNAL OF HEART FAILURE, 2022, 24 (04) : 668 - 671
  • [10] Updated risk prediction model for pancreaticoduodenectomy using data from the National Clinical Database in Japan
    Mizuma, Masamichi
    Endo, Hideki
    Yamamoto, Hiroyuki
    Shimura, Mitsuhiro
    Iseki, Masahiro
    Unno, Michiaki
    Oshikiri, Taro
    Kakeji, Yoshihiro
    Shirabe, Ken
    ANNALS OF GASTROENTEROLOGICAL SURGERY, 2024,