On the Number of Components of a Complete Intersection of Real Quadrics

被引:5
作者
Degtyarev, Alex [1 ]
Itenberg, Ilia [2 ,4 ]
Kharlamov, Viatcheslav [3 ]
机构
[1] Bilkent Univ, TR-06800 Ankara, Turkey
[2] Univ Pierre Marie Curie, Inst Matemat Jussieu, F-75005 Paris, France
[3] Univ Strasbourg, IRMA, F-67084 Strasbourg, France
[4] Inst Univ France, F-75005 Paris, France
来源
PERSPECTIVES IN ANALYSIS, GEOMETRY, AND TOPOLOGY: ON THE OCCASION OF THE 60TH BIRTHDAY OF OLEG VIRO | 2012年 / 296卷
关键词
Betti number; Quadric; Complete intersection; Theta characteristic; CURVES;
D O I
10.1007/978-0-8176-8277-4_5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main results concern complete intersections of three real quadrics. We prove that the maximal number B-2(0)(N) of connected components that a regular complete intersection of three real quadrics in P-N may have differs at most by one from the maximal number of ovals of the submaximal depth [(N - 1)/2] of a real plane projective curve of degree d = N + 1. As a consequence, we obtain a lower bound 1/4N(2) + O(N) and an upper bound 3/8N(2) + O(N) for B-2(0)(N).
引用
收藏
页码:81 / +
页数:3
相关论文
共 29 条
[1]  
Agrachev A.A., 1990, J. Soviet Mathematics, V26, P990, DOI [10.1007/BF02133177, DOI 10.1007/BF02133177]
[2]  
Agrachev A.A., 1988, Sov. Math., V37, P493
[3]  
AGRACHEV AA, 1988, DOKL AKAD NAUK SSSR+, V299, P11
[4]  
[Anonymous], 1876, MATH ANN
[5]  
ARNOLD VI, 1971, FUNCTIONAL ANAL APPL, V5, P169, DOI 10.1007/BF01078120
[6]  
Atiyah M., 1971, Ann. Sci. Ecole Norm. Sup., V4, P47
[7]  
BRUSOTTI L, 1921, REND ROM AC LINCEI, V30, P375
[8]  
Castelnuovo G., 1889, Atti R. Accad. Sci. Torino, V24, P196
[9]   Topological properties of real algebraic varieties: du cote de chez Rokhlin [J].
Degtyarev, A ;
Kharlamov, V .
RUSSIAN MATHEMATICAL SURVEYS, 2000, 55 (04) :735-814
[10]  
Degtyarev A., 1996, Am. Math. Soc. Transl., Ser. 2, V173, P61