LONG-TIME ASYMPTOTICS OF THE TODA LATTICE FOR DECAYING INITIAL DATA REVISITED

被引:47
|
作者
Krueger, Helge [1 ]
Teschl, Gerald [2 ,3 ]
机构
[1] Rice Univ, Dept Math, Houston, TX 77005 USA
[2] Fac Math, A-1090 Vienna, Austria
[3] Inst Math Phys, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Riemann-Hilbert problem; Toda lattice; solitons; INVERSE SCATTERING TRANSFORM; EQUATIONS; BEHAVIOR;
D O I
10.1142/S0129055X0900358X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The purpose of this article is to give a streamlined and self-contained treatment of the long-time asymptotics of the Toda lattice for decaying initial data in the soliton and in the similarity region via the method of nonlinear steepest descent.
引用
收藏
页码:61 / 109
页数:49
相关论文
共 50 条
  • [21] Decaying Long-Time Asymptotics for the Focusing NLS Equation with Periodic Boundary Condition
    de Monvel, Anne Boutet
    Kotlyarov, Vladimir
    Shepelsky, Dmitry
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (03) : 547 - 577
  • [22] Long-time asymptotics for the nonlocal nonlinear Schrodinger equation with step-like initial data
    Rybalko, Yan
    Shepelsky, Dmitry
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 270 : 694 - 724
  • [23] Long-time asymptotics for the defocusing Ablowitz-Ladik system with initial data in lower regularity
    Chen, Meisen
    He, Jingsong
    Fan, Engui
    ADVANCES IN MATHEMATICS, 2024, 450
  • [24] Long-time asymptotics for the Korteweg-de Vries equation with step-like initial data
    Egorova, Iryna
    Gladka, Zoya
    Kotlyarov, Volodymyr
    Teschl, Gerald
    NONLINEARITY, 2013, 26 (07) : 1839 - 1864
  • [25] LONG-TIME BEHAVIOR OF A DECAYING VORTEX
    GUNZBURGER, MD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1973, 53 (12): : 751 - 760
  • [26] Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data: Announcement of Results
    Percy Deift
    Jungwoon Park
    Letters in Mathematical Physics, 2011, 96 : 143 - 156
  • [27] Long-Time Asymptotics for Solutions of the NLS Equation with a Delta Potential and Even Initial Data: Announcement of Results
    Deift, Percy
    Park, Jungwoon
    LETTERS IN MATHEMATICAL PHYSICS, 2011, 96 (1-3) : 143 - 156
  • [28] Spectral analysis and long-time asymptotics for the Harry Dym-type equation with the Schwartz initial data
    Liu, Wenhao
    Geng, Xianguo
    Wang, Kedong
    Chen, Mingming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 357 : 181 - 235
  • [29] Long-Time Asymptotics for Polymerization Models
    Calvo, Juan
    Doumic, Marie
    Perthame, Benoit
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (01) : 111 - 137
  • [30] Long-time asymptotics for semiconductor crystals
    Bechouche, P
    López, JL
    Soler, J
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (09) : 5861 - 5872