Notch Signaling and the Breast Cancer Microenvironment

被引:40
作者
Shen, Qiang [1 ]
Reedijk, Michael [1 ]
机构
[1] Univ Hlth Network, Princess Margaret Canc Ctr, Dept Surg Oncol, Toronto, ON, Canada
来源
NOTCH SIGNALING IN EMBRYOLOGY AND CANCER: NOTCH SIGNALING IN CANCER | 2020年 / 1287卷
关键词
Notch; JAG; DLL; gamma-secretase; RBPJ kappa; Breast cancer; Triple negative; Basal-like; Tumor microenvironment; Angiogenesis; Urokinase-type plasminogen activator; Extracellular matrix; TRB3; USP9x; Cellular stress; TGF-beta; IL1; beta; CCL2; Tumor-associated macrophage; CD8+T-cell; Immunophenotype; Cancer-associated fibroblast; PD-1; Immune checkpoint blockade; ENDOTHELIAL GROWTH-FACTOR; EPITHELIAL-MESENCHYMAL TRANSITION; IN-VITRO PROPAGATION; MAMMARY-TUMOR VIRUS; REGULATORY T-CELLS; STROMAL FIBROBLASTS; UBIQUITIN LIGASE; GENE-EXPRESSION; STEM-CELLS; MATRIX METALLOPROTEINASES;
D O I
10.1007/978-3-030-55031-8_12
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Notch promotes breast cancer progression through tumor initiating cell maintenance, tumor cell fate specification, proliferation, survival, and motility. In addition, Notch is recognized as a decisive mechanism in regulating various juxtacrine and paracrine communications in the tumor microenvironment (TME). In this chapter, we review recent studies on stress-mediated Notch activation within the TME and sequelae such as angiogenesis, extracellular matrix remodeling, changes in the innate and adaptive immunophenotype, and therapeutic perspectives.
引用
收藏
页码:183 / 200
页数:18
相关论文
共 185 条
[1]   Hypoxia, lipids, and cancer: surviving the harsh tumor microenvironment [J].
Ackerman, Daniel ;
Simon, M. Celeste .
TRENDS IN CELL BIOLOGY, 2014, 24 (08) :472-478
[2]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[3]   Association between CD8+T-cell infiltration and breast cancer survival in 12 439 patients [J].
Ali, H. R. ;
Provenzano, E. ;
Dawson, S-J ;
Blows, F. M. ;
Liu, B. ;
Shah, M. ;
Earl, H. M. ;
Poole, C. J. ;
Hiller, L. ;
Dunn, J. A. ;
Bowden, S. J. ;
Twelves, C. ;
Bartlett, J. M. S. ;
Mahmoud, S. M. A. ;
Rakha, E. ;
Ellis, I. O. ;
Liu, S. ;
Gao, D. ;
Nielsen, T. O. ;
Pharoah, P. D. P. ;
Caldas, C. .
ANNALS OF ONCOLOGY, 2014, 25 (08) :1536-1543
[4]   Patterns of Immune Infiltration in Breast Cancer and Their Clinical Implications: A Gene-Expression-Based Retrospective Study [J].
Ali, H. Raza ;
Chlon, Leon ;
Pharoah, Paul D. P. ;
Markowetz, Florian ;
Caldas, Carlos .
PLOS MEDICINE, 2016, 13 (12)
[5]   Opinion - Survivin, cancer networks and pathway-directed drug discovery [J].
Altieri, Dario C. .
NATURE REVIEWS CANCER, 2008, 8 (01) :61-70
[6]   Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer [J].
Anan, K ;
Morisaki, T ;
Katano, M ;
Ikubo, A ;
Kitsuki, H ;
Uchiyama, A ;
Kuroki, S ;
Tanaka, M ;
Torisu, M .
SURGERY, 1996, 119 (03) :333-339
[7]   uPA and PAI-1 in breast cancer: Review of their clinical utility and current validation in the prospective NNBC-3 trial [J].
Annecke, K. ;
Schmitt, M. ;
Euler, U. ;
Zerm, M. ;
Paepke, D. ;
Paepke, S. ;
von Minckwitz, G. ;
Thomssen, C. ;
Harbeck, N. .
ADVANCES IN CLINICAL CHEMISTRY, VOL 45, 2008, 45 :31-45
[8]   Targeting Macrophage-Recruiting Chemokines as a Novel Therapeutic Strategy to Prevent the Progression of Solid Tumors [J].
Argyle, David ;
Kitamura, Takanori .
FRONTIERS IN IMMUNOLOGY, 2018, 9
[9]   Cyclin D1 in breast cancer pathogenesis [J].
Arnold, A ;
Papanikolaou, A .
JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (18) :4215-4224
[10]   The tumor microenvironment at a glance [J].
Balkwill, Frances R. ;
Capasso, Melania ;
Hagemann, Thorsten .
JOURNAL OF CELL SCIENCE, 2012, 125 (23) :5591-5596