Some Sharp Restriction Inequalities on the Sphere

被引:23
作者
Carneiro, Emanuel [1 ]
Oliveira e Silva, Diogo [2 ]
机构
[1] IMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, RJ, Brazil
[2] Univ Bonn, Hausdorff Ctr Math, D-53115 Bonn, Germany
关键词
STRICHARTZ INEQUALITIES; WAVE-EQUATION; EXISTENCE; MAXIMIZERS; EXTREMIZERS;
D O I
10.1093/imrn/rnu194
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find the sharp forms and characterize the complex-valued extremizers of the adjoint Fourier restriction inequalities on the sphere parallel to <(f sigma) over cap> L-p (R-d) less than or similar to parallel to L-q (Rd) (Sd-1, sigma) the cases (d, p, q) = (d, 2k, q) with d, k E N and gER. U (c)c) satisfying: (a) k= 2, q >= 2, and 3 < d < 7; (b) k= 2, q > 4, and d > 8; (c) k > 3, q > 2k, and di 2. We also prove a sharp multilinear weighted restriction inequality, with weight related to the k-fold convolution of the surface measure.
引用
收藏
页码:8233 / 8267
页数:35
相关论文
共 30 条
[1]  
Bennett J., 2014, ARXIVORGABS14042466
[2]   HEAT-FLOW MONOTONICITY OF STRICHARTZ NORMS [J].
Bennett, Jonathan ;
Bez, Neal ;
Carbery, Anthony ;
Hundertmark, Dirk .
ANALYSIS & PDE, 2009, 2 (02) :147-158
[3]  
Bez N., 2014, ARXIVORGABS14071603
[4]   A sharp Strichartz estimate for the wave equation with data in the energy space [J].
Bez, Neal ;
Rogers, Keith M. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) :805-823
[5]  
Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
[6]   A Sharp Inequality for the Strichartz Norm [J].
Carneiro, Emanuel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (16) :3127-3145
[7]   On restricting Cauchy-Pexider functional equations to submanifolds [J].
Charalambides, Marcos .
AEQUATIONES MATHEMATICAE, 2013, 86 (03) :230-253
[8]   EXISTENCE OF EXTREMALS FOR A FOURIER RESTRICTION INEQUALITY [J].
Christ, Michael ;
Shao, Shuanglin .
ANALYSIS & PDE, 2012, 5 (02) :261-312
[9]   On the extremizers of an adjoint Fourier restriction inequality [J].
Christ, Michael ;
Shao, Shuanglin .
ADVANCES IN MATHEMATICS, 2012, 230 (03) :957-977
[10]  
Dai F., 2013, Approximation Theory and Harmonic Analysis on Spheres and Balls (Springer Monographs in Mathematics)