The position non Markovian master equation

被引:0
作者
Pourdarvish, A. [1 ]
Sadeghi, J. [2 ]
Hassan, N. J. [1 ]
机构
[1] Univ Mazandran, Fac Math Sci, Dept Stat, Babol Sar, Iran
[2] Univ Mazandaran, Fac Basic Sci, Dept Phys, Babol Sar, Iran
关键词
Post Markovian perturbation; Position Non Markovian master equation; Statistical operator; Functional operator; QUANTUM-STATE DIFFUSION; BROWNIAN-MOTION; DERIVATION; SYSTEM; TIME;
D O I
10.1016/j.chaos.2016.12.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we derive the non Markovian master equation (NMME) that correspond to position non Markovian stochastic Schrodinger equation (PNMSSE) in linear and non linear cases. In this case, using Nivokov property we derive four formulas of (NMME) for linear and non linear cases respectively. The functional derivative operator may depend on time and independent with respect to noise. Here, we determine the functional derivative of statistical operator. When the functional derivative operator depends on time and noise, one can calculate the perturbation and post Markovian perturbation for the functional operator, which exists in position non Markovian equation of motion (PNMEM). In order to explain our theory, we present a simple non Markovian example. Finally, we give the conclusion and the plan for future works. (C) 2016 Published by Elsevier Ltd.
引用
收藏
页码:57 / 64
页数:8
相关论文
共 31 条
  • [11] THE THEORY OF A GENERAL QUANTUM SYSTEM INTERACTING WITH A LINEAR DISSIPATIVE SYSTEM
    FEYNMAN, RP
    VERNON, FL
    [J]. ANNALS OF PHYSICS, 1963, 24 (01) : 118 - 173
  • [12] The theory of a general quantum system interacting with a linear dissipative system (Reprinted from Annals of Physics, vol 24, pg 118-173, 1963)
    Feynman, RP
    Vernon, FL
    [J]. ANNALS OF PHYSICS, 2000, 281 (1-2) : 547 - 607
  • [13] Exact solution of the Hu-Paz-Zhang master equation
    Ford, GW
    O'Connell, RF
    [J]. PHYSICAL REVIEW D, 2001, 64 (10):
  • [14] Perturbative approach to non-Markovian stochastic Schrodinger equations
    Gambetta, J
    Wiseman, HM
    [J]. PHYSICAL REVIEW A, 2002, 66 (05): : 16
  • [15] Gambetta J, 2004, OPTICS B, V6, pS821
  • [16] QUANTUM STATE DIFFUSION-THEORY AND A QUANTUM JUMP EXPERIMENT
    GISIN, N
    KNIGHT, PL
    PERCIVAL, IC
    THOMPSON, RC
    WILSON, DC
    [J]. JOURNAL OF MODERN OPTICS, 1993, 40 (09) : 1663 - 1671
  • [17] QUANTUM BROWNIAN-MOTION - THE FUNCTIONAL INTEGRAL APPROACH
    GRABERT, H
    SCHRAMM, P
    INGOLD, GL
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1988, 168 (03): : 115 - 207
  • [18] STRONG DAMPING AND LOW-TEMPERATURE ANOMALIES FOR THE HARMONIC-OSCILLATOR
    HAAKE, F
    REIBOLD, R
    [J]. PHYSICAL REVIEW A, 1985, 32 (04): : 2462 - 2475
  • [19] Alternative derivation of the Hu-Paz-Zhang master equation of quantum Brownian motion
    Halliwell, JJ
    Yu, T
    [J]. PHYSICAL REVIEW D, 1996, 53 (04): : 2012 - 2019
  • [20] QUANTUM BROWNIAN-MOTION IN A GENERAL ENVIRONMENT .2. NONLINEAR COUPLING AND PERTURBATIVE APPROACH
    HU, BL
    PAZ, JP
    ZHANG, YH
    [J]. PHYSICAL REVIEW D, 1993, 47 (04): : 1576 - 1594