A comparison of numerical models for one-dimensional Stefan problems

被引:124
作者
Javierre, E. [1 ]
Vuik, C. [1 ]
Vermolen, F. J. [1 ]
van der Zwaag, S. [1 ]
机构
[1] Delft Univ Technol, NL-2628 CD Delft, Netherlands
关键词
Stefan problem; phase transformations; similarity solutions; moving grid method; level set method; phase field method;
D O I
10.1016/j.cam.2005.04.062
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a critical comparison of the suitability of several numerical methods, level set, moving grid and phase field model, to address two well-known Stefan problems in phase transformation studies: melting of a pure phase and diffusional solid-state phase transformations in a binary system. Similarity solutions are applied to verify the numerical results. The comparison shows that the type of phase transformation considered determines the convenience of the numerical techniques. Finally, it is shown both numerically and analytically that the solid-solid phase transformation is a limiting case of the solid-liquid transformation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:445 / 459
页数:15
相关论文
共 27 条
[1]   The fast construction of extension velocities in level set methods [J].
Adalsteinsson, D ;
Sethian, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 148 (01) :2-22
[2]   A NUMERICAL-ANALYSIS OF AN ANISOTROPIC PHASE FIELD MODEL [J].
CAGINALP, G ;
LIN, JT .
IMA JOURNAL OF APPLIED MATHEMATICS, 1987, 39 (01) :51-66
[3]   STEFAN AND HELE-SHAW TYPE MODELS AS ASYMPTOTIC LIMITS OF THE PHASE-FIELD EQUATIONS [J].
CAGINALP, G .
PHYSICAL REVIEW A, 1989, 39 (11) :5887-5896
[4]   A simple level set method for solving Stefan problems [J].
Chen, S ;
Merriman, B ;
Osher, S ;
Smereka, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 135 (01) :8-29
[5]  
Crank J., 1984, Free and Moving Boundary Problems
[6]  
DOUGLAS J, 2005, P AM MATH SOC, V8, P402
[7]   A NOTE ON THE EXISTENCE OF A SOLUTION TO A PROBLEM OF STEFAN [J].
EVANS, GW .
QUARTERLY OF APPLIED MATHEMATICS, 1951, 9 (02) :185-193
[8]   The phase-field method in the sharp-interface limit: A comparison between model potentials [J].
Fabbri, M ;
Voller, VR .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 130 (02) :256-265
[9]   A level set approach for the numerical simulation of dendritic growth [J].
Gibou, F ;
Fedkiw, R ;
Caflisch, R ;
Osher, S .
JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) :183-199
[10]   On the early exercise boundary of the American put option [J].
Goodman, J ;
Ostrov, DN .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (05) :1823-1835