Turning main-group element magnesium into a highly active electrocatalyst for oxygen reduction reaction

被引:306
作者
Liu, Shuai [1 ,2 ]
Li, Zedong [1 ,2 ]
Wang, Changlai [1 ,2 ]
Tao, Weiwei [4 ]
Huang, Minxue [1 ,2 ]
Zuo, Ming [1 ,2 ]
Yang, Yang [1 ,2 ]
Yang, Kang [1 ,2 ]
Zhang, Lijuan [5 ]
Chen, Shi [1 ,2 ]
Xu, Pengping [1 ,2 ]
Chen, Qianwang [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Mat Sci & Engn, Hefei 230026, Peoples R China
[3] Acad Sci, High Magnet Field Lab Chinese, Anhui Prov Key Lab Condensed Matter Phys Extreme, Hefei 230031, Peoples R China
[4] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
[5] Shanghai Inst Appl Phys, Shanghai Synchrotron Radiat Facil, Shanghai 201203, Peoples R China
基金
国家重点研发计划;
关键词
FUNCTIONALIZED GRAPHITIC MATERIALS; TRANSITION-METALS; ELECTRONIC-STRUCTURE; RATIONAL DESIGN; CATALYSTS; ORIGIN; CARBON; IRON; SPECTROSCOPY; EVOLUTION;
D O I
10.1038/s41467-020-14565-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
It is known that the main-group metals and their related materials show poor catalytic activity due to a broadened single resonance derived from the interaction of valence orbitals of adsorbates with the broad sp-band of main-group metals. However, Mg cofactors existing in enzymes are extremely active in biochemical reactions. Our density function theory calculations reveal that the catalytic activity of the main-group metals (Mg, Al and Ca) in oxygen reduction reaction is severely hampered by the tight-bonding of active centers with hydroxyl group intermediate, while the Mg atom coordinated to two nitrogen atoms has the near-optimal adsorption strength with intermediate oxygen species by the rise of p-band center position compared to other coordination environments. We experimentally demonstrate that the atomically dispersed Mg cofactors incorporated within graphene framework exhibits a strikingly high half-wave potential of 910 mV in alkaline media, turning a s/p-band metal into a highly active electrocatalyst.
引用
收藏
页数:11
相关论文
共 54 条
  • [1] [Anonymous], 2017, ANGEW CHEM, DOI [10.1002/ange.201702473, DOI 10.1002/ANGE.201702473]
  • [2] A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction[J]. Bezerra, Cicero W. B.;Zhang, Lei;Liu, Hansan;Lee, Kunchan;Marques, Aldalea L. B.;Marques, Edmar P.;Wang, Haijiang;Zhang, Jiujun. JOURNAL OF POWER SOURCES, 2007(02)
  • [3] Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Bu, Lingzheng;Zhang, Nan;Guo, Shaojun;Zhang, Xu;Li, Jing;Yao, Jianlin;Wu, Tao;Lu, Gang;Ma, Jing-Yuan;Su, Dong;Huang, Xiaoqing. SCIENCE, 2016(6318)
  • [4] Oxygen reduction and evolution at single-metal active sites: Comparison between functionalized graphitic materials and protoporphyrins[J]. Calle-Vallejo, F.;Martinez, J. I.;Garcia-Lastra, J. M.;Abad, E.;Koper, M. T. M. SURFACE SCIENCE, 2013
  • [5] Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions[J]. Calle-Vallejo, Federico;Ignacio Martinez, Jose;Rossmeisl, Jan. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011(34)
  • [6] Are metal-free pristine carbon nanotubes electrocatalytically active?[J]. Cheng, Yi;Zhang, Jin;Jiang, San Ping. CHEMICAL COMMUNICATIONS, 2015(72)
  • [7] Structural and catalytic chemistry of magnesium-dependent enzymes[J]. Cowan, JA. BIOMETALS, 2002(03)
  • [8] Electrocatalyst approaches and challenges for automotive fuel cells[J]. Debe, Mark K. NATURE, 2012(7401)
  • [9] A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Deng, Dehui;Chen, Xiaoqi;Yu, Liang;Wu, Xing;Liu, Qingfei;Liu, Yun;Yang, Huaixin;Tian, Huanfang;Hu, Yongfeng;Du, Peipei;Si, Rui;Wang, Junhu;Cui, Xiaoju;Li, Haobo;Xiao, Jianping;Xu, Tao;Deng, Jiao;Yang, Fan;Duchesne, Paul N.;Zhang, Peng;Zhou, Jigang;Sun, Litao;Li, Jianqi;Pan, Xiulian;Bao, Xinhe. SCIENCE ADVANCES, 2015(11)
  • [10] Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis[J]. Dunn, M. F.;Ramirez-Trujillo, J. A.;Hernandez-Lucas, I. MICROBIOLOGY-SGM, 2009