A SIMPLE PROOF OF STOLARSKY'S INVARIANCE PRINCIPLE

被引:26
作者
Brauchart, Johann S. [1 ]
Dick, Josef [1 ]
机构
[1] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
关键词
Invariance principle; reproducing kernel Hilbert space; sphere; spherical cap discrepancy; sum of distances; worst-case numerical integration error; POINTS; IRREGULARITIES; DISTANCES; SUMS;
D O I
10.1090/S0002-9939-2013-11490-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stolarsky [Proc. Amer. Math. Soc. 41 (1973), 575-582] showed a beautiful relation that balances the sums of distances of points on the unit sphere and their spherical cap L-2-discrepancy to give the distance integral of the uniform measure on the sphere which is a potential-theoretical quantity (Bjorck [Ark. Mat. 3 (1956), 255-269]). Read differently it expresses the worst-case numerical integration error for functions from the unit ball in a certain Hilbert space setting in terms of the L-2-discrepancy and vice versa. In this note we give a simple proof of the invariance principle using reproducing kernel Hilbert spaces.
引用
收藏
页码:2085 / 2096
页数:12
相关论文
共 17 条