Almost sure asymptotics for extremes of non-stationary Gaussian random fields

被引:10
作者
Tan, Zhongquan [1 ,2 ]
Wang, Yuebao [1 ]
机构
[1] Soochow Univ, Sch Math Sci, Suzhou 215006, Jiangsu, Peoples R China
[2] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing 314001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Almost sure limit theorem; Extremes; Gaussian random fields; Non-stationary; CENTRAL-LIMIT-THEOREM; CONVERGENCE;
D O I
10.1007/s11401-013-0810-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors prove an almost sure limit theorem for the maxima of non-stationary Gaussian random fields under some mild conditions related to the covariance functions of the Gaussian fields. As the by-products, the authors also obtain several weak convergence results which extended the existing results.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 20 条
[1]  
Adler R.J, 2007, Springer Monographs in Mathematics
[2]  
[Anonymous], 1983, Springer Series in Statistics, DOI 10.1007/978-1-4612-5449-2
[3]  
Berman SM., 1992, SOJOURNS EXTREMES ST
[4]  
BROSAMLER GA, 1988, CR ACAD SCI I-MATH, V307, P919
[5]   A SIMULTANEOUS ALMOST EVERYWHERE CENTRAL-LIMIT-THEOREM FOR DIFFUSIONS AND ITS APPLICATION TO PATH ENERGY AND EIGENVALUES OF THE LAPLACIAN [J].
BROSAMLER, GA .
ILLINOIS JOURNAL OF MATHEMATICS, 1990, 34 (03) :526-556
[6]   AN ALMOST EVERYWHERE CENTRAL LIMIT-THEOREM [J].
BROSAMLER, GA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :561-574
[7]   Almost sure limit theorems for a stationary normal sequence [J].
Chen Shouquan ;
Lin Zhengyan .
APPLIED MATHEMATICS LETTERS, 2007, 20 (03) :316-322
[8]   Almost sure convergence in extreme value theory [J].
Cheng, SH ;
Peng, L ;
Qi, YC .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :43-50
[9]  
CHOI H, 2002, THESIS U N CAROLINA
[10]   Almost sure limit theorem for stationary Gaussian random fields [J].
Choi, Hyemi .
JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (04) :449-454