Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems

被引:7
作者
Arraras, A. [1 ]
Portero, L. [1 ]
Yotov, I. [2 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
基金
美国国家科学基金会;
关键词
Cell-centered finite difference; Domain decomposition; Fractional step; Mixed finite element; Multipoint flux approximation; Operator splitting; MIXED FINITE-ELEMENTS; RUNGE-KUTTA METHODS; TENSOR DISCRETIZATION OPERATORS; NUMERICAL-SOLUTION; CONVERGENCE; APPROXIMATIONS; STABILITY; SCHEMES;
D O I
10.1016/j.jcp.2013.08.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1321 / 1351
页数:31
相关论文
共 58 条
[1]   Convergence of a symmetric MPFA method on quadrilateral grids [J].
Aavatsmark, I. ;
Eigestad, G. T. ;
Klausen, R. A. ;
Wheeler, M. F. ;
Yotov, I. .
COMPUTATIONAL GEOSCIENCES, 2007, 11 (04) :333-345
[2]   Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results [J].
Aavatsmark, I ;
Barkve, T ;
Boe, O ;
Mannseth, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1717-1736
[3]   An introduction to multipoint flux approximations for quadrilateral grids [J].
Aavatsmark, I .
COMPUTATIONAL GEOSCIENCES, 2002, 6 (3-4) :405-432
[4]   Spectral-fractional step Runge-Kutta discretizations for initial boundary value problems with time dependent boundary conditions [J].
Alonso-Mallo, I ;
Cano, B ;
Jorge, JC .
MATHEMATICS OF COMPUTATION, 2004, 73 (248) :1801-1825
[5]  
[Anonymous], 1991, SPRINGER SER COMPUT
[6]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[7]   Convergence of fractional step mimetic finite difference discretization for semilinear parabolic problems [J].
Arraras, A. ;
Portero, L. ;
Jorge, J. C. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (04) :473-485
[8]  
Arraras A., 2011, THESIS U CARLOS 3 MA
[9]   Some remarks on quadrilateral mixed finite elements [J].
Boffi, Daniele ;
Gastaldi, Lucia .
COMPUTERS & STRUCTURES, 2009, 87 (11-12) :751-757
[10]  
Brenner S., 1982, RAIRO ANAL NUMER, V16, P5