The Development of a Universal In Silico Predictor of Protein-Protein Interactions

被引:28
作者
Valente, Guilherme T. [1 ]
Acencio, Marcio L. [2 ]
Martins, Cesar [1 ]
Lemke, Ney [2 ]
机构
[1] Univ Estadual Paulista, UNESP, Dept Morphol, Botucatu, SP, Brazil
[2] Univ Estadual Paulista, UNESP, Dept Phys & Biophys, Botucatu, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
LINK-PREDICTION; INTEGRATION; PRINCIPLES; NETWORKS; FEATURES; SITES;
D O I
10.1371/journal.pone.0065587
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Comprehensive statistical analysis of residues interaction specificity at protein-protein interfaces [J].
Anashkina, Anastasya ;
Kuznetsov, Eugene ;
Esipova, Natalia ;
Tumanyan, Vladimir .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2007, 67 (04) :1060-1077
[2]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[3]  
[Anonymous], 2014, C4. 5: programs for machine learning
[4]   Ongoing and future developments at the Universal Protein Resource [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Antunes, Ricardo ;
Barrell, Daniel ;
Bely, Benoit ;
Bingley, Mark ;
Binns, David ;
Bower, Lawrence ;
Browne, Paul ;
Chan, Wei Mun ;
Dimmer, Emily ;
Eberhardt, Ruth ;
Fazzini, Francesco ;
Fedotov, Alexander ;
Foulger, Rebecca ;
Garavelli, John ;
Castro, Leyla Garcia ;
Huntley, Rachael ;
Jacobsen, Julius ;
Kleen, Michael ;
Laiho, Kati ;
Legge, Duncan ;
Lin, Quan ;
Liu, Wudong ;
Luo, Jie ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pontikos, Nikolas ;
Pruess, Manuela ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Corbett, Matt ;
Donnelly, Mike ;
van Rensburg, Pieter ;
Xenarios, Ioannis ;
Bougueleret, Lydie ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Bairoch, Amos ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte .
NUCLEIC ACIDS RESEARCH, 2011, 39 :D214-D219
[5]   Protein-protein interactions as a target for drugs in proteomics [J].
Archakov, AI ;
Govorun, VM ;
Dubanov, AV ;
Ivanov, YD ;
Veselovsky, AV ;
Lewi, P ;
Janssen, P .
PROTEOMICS, 2003, 3 (04) :380-391
[6]   Prediction of protein-protein interactions by combining structure and sequence conservation in protein interfaces [J].
Aytuna, AS ;
Gursoy, A ;
Keskin, O .
BIOINFORMATICS, 2005, 21 (12) :2850-2855
[7]  
BAHADUR RP, 2010, PROTEIN PROTEIN COMP, P25
[8]   Kernel methods for predicting protein-protein interactions [J].
Ben-Hur, A ;
Noble, WS .
BIOINFORMATICS, 2005, 21 :I38-I46
[9]   Predicting protein-protein interactions from primary structure [J].
Bock, JR ;
Gough, DA .
BIOINFORMATICS, 2001, 17 (05) :455-460
[10]  
Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350