FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION

被引:36
|
作者
Cazenave, Thierry [1 ,2 ]
Dickstein, Flavio [3 ]
Weissler, Fred B. [4 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil
[4] Univ Paris 13, CNRS UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
complex Ginzburg-Landau equation; finite-time blowup; energy; variance; CAUCHY-PROBLEM; PARABOLIC EQUATIONS; MONOTONICITY METHOD; LOCAL SPACES; BLOWING-UP; NONEXISTENCE; EXISTENCE; THEOREMS;
D O I
10.1137/120878690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that negative energy solutions of the complex Ginzburg-Landau equation e-(i theta)u(t) = Delta u + vertical bar u vertical bar(alpha)u blow up in finite time, where alpha > 0 and -pi/2 < theta < pi/2. For a fixed initial value u(0), we obtain estimates of the blow-up time T-max(theta) as theta -> +/-pi/2. It turns out that T-max(theta) stays bounded (respectively, goes to infinity) as theta -> +/-pi/2 in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global).
引用
收藏
页码:244 / 266
页数:23
相关论文
共 50 条
  • [41] Superlattice Patterns in the Complex Ginzburg-Landau Equation with Multiresonant Forcing
    Conway, Jessica M.
    Riecke, Hermann
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (03): : 977 - 1004
  • [42] Responses of the complex Ginzburg-Landau equation under harmonic forcing
    Kim, J
    Lee, J
    Kahng, B
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 315 (1-2) : 330 - 341
  • [43] Dissipative Localised Structures for the Complex Discrete Ginzburg-Landau Equation
    Hennig, Dirk
    Karachalios, Nikos I.
    Cuevas-Maraver, Jesus
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (03)
  • [44] ASYMPTOTIC BEHAVIOR OF GLOBAL SOLUTIONS TO THE COMPLEX GINZBURG-LANDAU TYPE EQUATION IN THE SUPER FUJITA-CRITICAL CASE
    Kusaba, Ryunosuke
    Ozawa, Tohru
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2025, 14 (02): : 210 - 245
  • [45] Blow-up profile for the complex Ginzburg-Landau equation
    Masmoudi, Nader
    Zaag, Hatem
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (07) : 1613 - 1666
  • [46] First integrals and general solution of the complex Ginzburg-Landau equation
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 386
  • [47] Numerical continuation of invariant solutions of the complex Ginzburg-Landau equation
    Lopez, Vanessa
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 61 : 248 - 270
  • [48] A solution of the complex Ginzburg-Landau equation with a continuum of decay rates
    Jian Xie
    Zi-heng Tu
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 367 - 373
  • [49] Amplitude spiral wave in coupled complex Ginzburg-Landau equation
    Gao Ji-Hua
    Xie Wei-Miao
    Gao Jia-Zhen
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2012, 61 (13)
  • [50] Nonlinear stability of source defects in the complex Ginzburg-Landau equation
    Beck, Margaret
    Nguyen, Toan T.
    Sandstede, Bjoern
    Zumbrun, Kevin
    NONLINEARITY, 2014, 27 (04) : 739 - 786