FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION

被引:36
|
作者
Cazenave, Thierry [1 ,2 ]
Dickstein, Flavio [3 ]
Weissler, Fred B. [4 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil
[4] Univ Paris 13, CNRS UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
complex Ginzburg-Landau equation; finite-time blowup; energy; variance; CAUCHY-PROBLEM; PARABOLIC EQUATIONS; MONOTONICITY METHOD; LOCAL SPACES; BLOWING-UP; NONEXISTENCE; EXISTENCE; THEOREMS;
D O I
10.1137/120878690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that negative energy solutions of the complex Ginzburg-Landau equation e-(i theta)u(t) = Delta u + vertical bar u vertical bar(alpha)u blow up in finite time, where alpha > 0 and -pi/2 < theta < pi/2. For a fixed initial value u(0), we obtain estimates of the blow-up time T-max(theta) as theta -> +/-pi/2. It turns out that T-max(theta) stays bounded (respectively, goes to infinity) as theta -> +/-pi/2 in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global).
引用
收藏
页码:244 / 266
页数:23
相关论文
共 50 条
  • [31] Instability of the vortex solution in the complex Ginzburg-Landau equation
    Lin, TC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 45 (01) : 11 - 17
  • [32] Spatial homogenization by perturbation on the complex Ginzburg-Landau equation
    Ito, Shun
    Ninomiya, Hirokazu
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2023, 40 (02) : 823 - 841
  • [33] Stochastic complex Ginzburg-Landau equation with space-time white noise
    Hoshino, Masato
    Inahama, Yuzuru
    Naganuma, Nobuaki
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [34] ASYMPTOTIC COMPACTNESS OF STOCHASTIC COMPLEX GINZBURG-LANDAU EQUATION ON AN UNBOUNDED DOMAIN
    Bloemker, Dirk
    Han, Yongqian
    STOCHASTICS AND DYNAMICS, 2010, 10 (04) : 613 - 636
  • [35] The local and global existence of solutions for a time fractional complex Ginzburg-Landau equation
    Zhang, Quanguo
    Li, Yaning
    Su, Menglong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (01) : 16 - 43
  • [36] Attractors and inertial manifolds for finite-difference approximations of the complex Ginzburg-Landau equation
    Lord, GJ
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) : 1483 - 1512
  • [37] Complex Ginzburg-Landau Equation with Absorption: Existence, Uniqueness and Localization Properties
    Antontsev, Stanislav
    Dias, Joao-Paulo
    Figueira, Mario
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2014, 16 (02) : 211 - 223
  • [38] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Chugreeva, Olga
    Melcher, Christof
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2017, 5 (01): : 113 - 143
  • [39] Stability for amplitude spiral wave in complex Ginzburg-Landau equation
    Gao Ji-Hua
    Wang Yu
    Zhang Chao
    Yang Hai-Peng
    Ge Zao-Chuan
    ACTA PHYSICA SINICA, 2014, 63 (02)
  • [40] Numerical study of a Lyapunov functional for the complex Ginzburg-Landau equation
    Montagne, R
    HernandezGarcia, E
    SanMiguel, M
    PHYSICA D-NONLINEAR PHENOMENA, 1996, 96 (1-4) : 47 - 65