FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION

被引:36
|
作者
Cazenave, Thierry [1 ,2 ]
Dickstein, Flavio [3 ]
Weissler, Fred B. [4 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil
[4] Univ Paris 13, CNRS UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
complex Ginzburg-Landau equation; finite-time blowup; energy; variance; CAUCHY-PROBLEM; PARABOLIC EQUATIONS; MONOTONICITY METHOD; LOCAL SPACES; BLOWING-UP; NONEXISTENCE; EXISTENCE; THEOREMS;
D O I
10.1137/120878690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that negative energy solutions of the complex Ginzburg-Landau equation e-(i theta)u(t) = Delta u + vertical bar u vertical bar(alpha)u blow up in finite time, where alpha > 0 and -pi/2 < theta < pi/2. For a fixed initial value u(0), we obtain estimates of the blow-up time T-max(theta) as theta -> +/-pi/2. It turns out that T-max(theta) stays bounded (respectively, goes to infinity) as theta -> +/-pi/2 in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global).
引用
收藏
页码:244 / 266
页数:23
相关论文
共 50 条
  • [21] Soliton Solutions of the Complex Ginzburg-Landau Equation
    Rasheed, Faisal Salah Yousif
    Aziz, Zainal Abdul
    MATEMATIKA, 2009, 25 (01) : 39 - 51
  • [22] EXACT SOLUTIONS FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Qi, Peng
    Wu, Dongsheng
    Gao, Cuiyun
    Shao, Hui
    ICEIS 2011: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS, VOL 4, 2011, : 675 - 677
  • [23] Complex Ginzburg-Landau equation for time-varying anisotropic media
    Van Gorder, Robert A.
    STUDIES IN APPLIED MATHEMATICS, 2024, 153 (03)
  • [24] COMPLEX GINZBURG-LANDAU EQUATIONS WITH A DELAYED NONLOCAL PERTURBATION
    Ildefonso Diaz, Jesus
    Francisco Padial, Juan
    Ignacio Tello, Jose
    Tello, Lourdes
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [25] Hole solutions in the cubic complex Ginzburg-Landau equation versus holes in the cubic-quintic complex Ginzburg-Landau equation
    Brand, Helmut R.
    Descalzi, Orazio
    Cisternas, Jaime
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 133 - +
  • [26] Time-periodic spatial chaos in the complex Ginzburg-Landau equation
    Bazhenov, M
    Rabinovich, M
    Rubchinsky, L
    JOURNAL OF STATISTICAL PHYSICS, 1996, 83 (5-6) : 1165 - 1181
  • [27] A new compact finite difference scheme for solving the complex Ginzburg-Landau equation
    Yan, Yun
    Moxley, Frederick Ira, III
    Dai, Weizhong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 260 : 269 - 287
  • [28] Modulation instability of solutions to the complex Ginzburg-Landau equation
    Aleksic, Branislav N.
    Aleksic, Najdan B.
    Skarka, Vladimir
    Belic, Milivoj R.
    PHYSICA SCRIPTA, 2014, T162
  • [29] Numerically derived scalings for the complex Ginzburg-Landau equation
    Wilson, RE
    PHYSICA D, 1998, 112 (3-4): : 329 - 343
  • [30] Existence of standing waves for the complex Ginzburg-Landau equation
    Cipolatti, Rolci
    Dickstein, Flavio
    Puel, Jean-Pierre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 579 - 593