FINITE-TIME BLOWUP FOR A COMPLEX GINZBURG-LANDAU EQUATION

被引:36
作者
Cazenave, Thierry [1 ,2 ]
Dickstein, Flavio [3 ]
Weissler, Fred B. [4 ]
机构
[1] Univ Paris 06, F-75252 Paris 05, France
[2] CNRS, Lab Jacques Louis Lions, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, RJ, Brazil
[4] Univ Paris 13, CNRS UMR LAGA 7539, F-93430 Villetaneuse, France
关键词
complex Ginzburg-Landau equation; finite-time blowup; energy; variance; CAUCHY-PROBLEM; PARABOLIC EQUATIONS; MONOTONICITY METHOD; LOCAL SPACES; BLOWING-UP; NONEXISTENCE; EXISTENCE; THEOREMS;
D O I
10.1137/120878690
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that negative energy solutions of the complex Ginzburg-Landau equation e-(i theta)u(t) = Delta u + vertical bar u vertical bar(alpha)u blow up in finite time, where alpha > 0 and -pi/2 < theta < pi/2. For a fixed initial value u(0), we obtain estimates of the blow-up time T-max(theta) as theta -> +/-pi/2. It turns out that T-max(theta) stays bounded (respectively, goes to infinity) as theta -> +/-pi/2 in the case where the solution of the limiting nonlinear Schrodinger equation blows up in finite time (respectively, is global).
引用
收藏
页码:244 / 266
页数:23
相关论文
共 34 条
[2]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[3]   Low-dimensional behaviour in the complex Ginzburg-Landau equation [J].
Doering, Charles R. ;
Gibbon, John D. ;
Holm, Darryl D. ;
Nicolaenko, Basil .
NONLINEARITY, 1988, 1 (02) :279-309
[4]   WEAK AND STRONG SOLUTIONS OF THE COMPLEX GINZBURG-LANDAU EQUATION [J].
DOERING, CR ;
GIBBON, JD ;
LEVERMORE, CD .
PHYSICA D, 1994, 71 (03) :285-318
[5]  
Fife P., 1975, Mathematical Aspects of Reacting and Diffusing Systems
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .2. SCATTERING THEORY, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :33-71
[7]   The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .1. Compactness methods [J].
Ginibre, J ;
Velo, G .
PHYSICA D-NONLINEAR PHENOMENA, 1996, 95 (3-4) :191-228
[8]   The Cauchy problem in local spaces for the complex Ginzburg-Landau equation .2. Contraction methods [J].
Ginibre, J ;
Velo, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 187 (01) :45-79
[9]   BLOWING UP OF SOLUTIONS TO CAUCHY-PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS [J].
GLASSEY, RT .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1794-1797
[10]   NONUNIQUENESS FOR A SEMI-LINEAR INITIAL-VALUE PROBLEM [J].
HARAUX, A ;
WEISSLER, FB .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (02) :167-189