Investigation for the analysis of the vibrations of quasi-periodic structures

被引:0
作者
Timorian, S. [1 ,2 ]
Franco, F. [1 ]
Ouisse, M. [2 ]
De Rosa, S. [1 ]
Bouhaddi, N. [2 ]
机构
[1] Univ Napoli Federico II, Dept Ind Engn, Aerosp Sect, Via Claudio 21, I-80125 Naples, Italy
[2] Univ Bourgogne Franche Comte, Dept Appl Mech, 24 Rue Epitaphe, F-25000 Besancon, France
来源
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING (ISMA2018) / INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS (USD2018) | 2018年
基金
欧盟地平线“2020”;
关键词
WAVE-PROPAGATION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Periodic structures are well known for the possibility to exhibit band gap effects. This work aims at investigating vibration behaviors of quasi-periodic structures. In this paper, the quasi-periodic structure is defined as a type of beam with an impedance mismatch generated by Fibonacci orders with non-symmetrical translation in geometry, acting as a waveguide. Two types of quasi-periodicity are considered, namely finite, and infinite Fibonacci sequences using super unit cell. Considering flexural elastic waves in above mentioned quasi-periodic models, the frequency ranges corresponding to band gaps are investigated, using either spectral analysis of infinite structures or frequency response functions of finite structures. Fibonacci beams exhibit multi stop bands with short widths in different frequency ranges, whereas periodic and its super unit cells-based structures have only one stop band frequency with larger frequency extension.
引用
收藏
页码:4679 / 4690
页数:12
相关论文
共 16 条
[1]  
Aki K., 1983, TEORIYA METODY, P1
[2]  
[Anonymous], 2003, WAVE PROPAGATION PER
[3]  
Banerjee A., 2018, ARCH COMPUTATIONAL M, P1
[4]   WAVE-PROPAGATION IN IMPERFECTLY PERIODIC STRUCTURES - RANDOM EVOLUTION APPROACH [J].
BECUS, GA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (02) :252-261
[5]   Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials [J].
Billon, Kevin ;
Zampetakis, Ioannis ;
Scarpa, Fabrizio ;
Ouisse, Morvan ;
Sadoulet-Reboul, Emeline ;
Collet, Manuel ;
Perriman, Adam ;
Hetherington, Alistair .
COMPOSITE STRUCTURES, 2017, 160 :1042-1050
[6]   Band structures of Fibonacci phononic quasicrystals [J].
Chen, A-Li ;
Wang, Yue-Sheng ;
Guo, Ya-Fang ;
Wang, Zheng-Dao .
SOLID STATE COMMUNICATIONS, 2008, 145 (03) :103-108
[7]   Floquet-Bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems [J].
Collet, M. ;
Ouisse, M. ;
Ruzzene, M. ;
Ichchou, M. N. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (20) :2837-2848
[8]   Finite element analysis of the vibrations of waveguides and periodic structures [J].
Duhamel, D ;
Mace, BR ;
Brennan, MJ .
JOURNAL OF SOUND AND VIBRATION, 2006, 294 (1-2) :205-220
[9]   Wave propagation in quasiperiodic structures: stop/pass band distribution and prestress effects [J].
Gei, Massimiliano .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (22-23) :3067-3075
[10]  
Langley R. S., 2017, 24 INT C SOUND VIBR