Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures

被引:91
作者
Gopinadhan, Kalon [1 ,2 ,3 ,4 ]
Shin, Young Jun [3 ,4 ]
Jalil, Rashid [5 ]
Venkatesan, Thirumalai [3 ,4 ,6 ]
Geim, Andre K. [5 ]
Neto, Antonio H. Castro [1 ,2 ,6 ]
Yang, Hyunsoo [1 ,2 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Ctr Adv Mat 2D, Singapore 117546, Singapore
[2] Natl Univ Singapore, Graphene Res Ctr, Singapore 117546, Singapore
[3] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[4] Natl Univ Singapore, NUSNNI Nanocore, Singapore 117576, Singapore
[5] Univ Manchester, Ctr Mesosci & Nanotechnol, Manchester M12 9PL, Lancs, England
[6] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
新加坡国家研究基金会;
关键词
QUANTUM LINEAR MAGNETORESISTANCE; THERMAL-CONDUCTIVITY; ROOM-TEMPERATURE; BORON-NITRIDE; FIELD; STACKING;
D O I
10.1038/ncomms9337
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of similar to 2,000% at 400 K and a non-local magnetoresistance of 490,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron-nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen-Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Giant Nonlocality Near the Dirac Point in Graphene [J].
Abanin, D. A. ;
Morozov, S. V. ;
Ponomarenko, L. A. ;
Gorbachev, R. V. ;
Mayorov, A. S. ;
Katsnelson, M. I. ;
Watanabe, K. ;
Taniguchi, T. ;
Novoselov, K. S. ;
Levitov, L. S. ;
Geim, A. K. .
SCIENCE, 2011, 332 (6027) :328-330
[2]   Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime [J].
Abanin, D. A. ;
Shytov, A. V. ;
Levitov, L. S. ;
Halperin, B. I. .
PHYSICAL REVIEW B, 2009, 79 (03)
[3]   Quantum linear magnetoresistance [J].
Abrikosov, AA .
EUROPHYSICS LETTERS, 2000, 49 (06) :789-793
[4]   Dependence of band structures on stacking and field in layered graphene [J].
Aoki, Masato ;
Amawashi, Hiroshi .
SOLID STATE COMMUNICATIONS, 2007, 142 (03) :123-127
[5]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P655, DOI [10.1038/NNANO.2010.154, 10.1038/nnano.2010.154]
[6]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[7]  
Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/NPHYS2103, 10.1038/nphys2103]
[8]   Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures [J].
Britnell, L. ;
Gorbachev, R. V. ;
Jalil, R. ;
Belle, B. D. ;
Schedin, F. ;
Mishchenko, A. ;
Georgiou, T. ;
Katsnelson, M. I. ;
Eaves, L. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Leist, J. ;
Geim, A. K. ;
Novoselov, K. S. ;
Ponomarenko, L. A. .
SCIENCE, 2012, 335 (6071) :947-950
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Layer-by-layer assembly of vertically conducting graphene devices [J].
Chen, Jing-Jing ;
Meng, Jie ;
Zhou, Yang-Bo ;
Wu, Han-Chun ;
Bie, Ya-Qing ;
Liao, Zhi-Min ;
Yu, Da-Peng .
NATURE COMMUNICATIONS, 2013, 4