A CLT FOR EMPIRICAL PROCESSES INVOLVING TIME-DEPENDENT DATA

被引:9
作者
Kuelbs, James [1 ]
Kurtz, Thomas [1 ]
Zinn, Joel [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Texas A&M Univ, Dept Math, College Stn, TX 77840 USA
基金
美国国家科学基金会;
关键词
Central limit theorems; empirical processes; LIMIT-THEOREMS; CONVERGENCE;
D O I
10.1214/11-AOP711
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For stochastic processes {X-t : t is an element of E}, we establish sufficient conditions for the empirical process based on {I-Xt <= y - Pr(X-t <= y) : t is an element of E, y is an element of R} to satisfy the CLT uniformly in t is an element of E, y is an element of R. Corollaries of our main result include examples of classical processes where the CLT holds, and we also show that it fails for Brownian motion tied down at zero and E = [0, 1].
引用
收藏
页码:785 / 816
页数:32
相关论文
共 19 条
[1]   THE CENTRAL LIMIT-THEOREM AND THE LAW OF ITERATED LOGARITHM FOR EMPIRICAL PROCESSES UNDER LOCAL CONDITIONS [J].
ANDERSEN, NT ;
GINE, E ;
OSSIANDER, M ;
ZINN, J .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (02) :271-305
[2]  
[Anonymous], 1960, T AM MATH SOC
[3]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd
[4]  
Dudley R. M., 1999, CAMBRIDGE STUDIES AD, DOI 10.1017/CBO9780511665622
[5]  
Ferguson T. S., 1967, PROBABILITY MATH STA, V1
[6]   THE NARROW CONVERGENCE OF GAUSSIAN MEASUREMENTS [J].
FERNIQUE, X .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03) :331-336
[7]  
FERNIQUE X., 1975, Lecture Notes in Mathematics, V480, P1
[8]   SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
GINE, E ;
ZINN, J .
ANNALS OF PROBABILITY, 1984, 12 (04) :929-989
[9]   RATES OF CLUSTERING FOR SOME GAUSSIAN SELF-SIMILAR PROCESSES [J].
GOODMAN, V ;
KUELBS, J .
PROBABILITY THEORY AND RELATED FIELDS, 1991, 88 (01) :47-75
[10]   STRONG CONVERGENCE THEOREM FOR BANACH-SPACE VALUED RANDOM-VARIABLES [J].
KUELBS, J .
ANNALS OF PROBABILITY, 1976, 4 (05) :744-771