Porous sets and lineability of continuous functions on locally compact groups

被引:4
作者
Akbarbaglu, Ibrahim [1 ]
Maghsoudi, Saeid [1 ]
Seoane-Sepulveda, Juan B. [2 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan 45195313, Iran
[2] Univ Complutense Madrid, Dept Anal Matemat, Fac Ciencias Matemat, E-28040 Madrid, Spain
关键词
Continuous function; sigma-c-lower porous set; Locally compact group; Convolution; Lineability; Spaceability; Algebrability; SPACES; ALGEBRABILITY; DICHOTOMIES; POROSITY;
D O I
10.1016/j.jmaa.2013.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a non-compact locally compact group. In this paper we study the size of the set {(f, g) is an element of A x B : f * g is well-defined on G} where A and B are normed spaces of continuous functions on G. We also consider the problem of the spaceability of the set (C-0 (G) boolean AND (C-0(G) * C-0(G))) \ C-00 (G) and (among other results) we show that, for G = R-n, the above set is strongly c-algebrable (and, therefore, algebrable and lineable) with respect to the convolution product. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 29 条
  • [1] POROSITY OF CERTAIN SUBSETS OF LEBESGUE SPACES ON LOCALLY COMPACT GROUPS
    Akbarbaglu, I.
    Maghsoudi, S.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (01) : 113 - 122
  • [2] An answer to a question on the convolution of functions
    Akbarbaglu, Ibrahim
    Maghsoudi, Saeid
    [J]. ARCHIV DER MATHEMATIK, 2012, 98 (06) : 545 - 553
  • [3] Lineability and spaceability of sets of functions on R
    Aron, R
    Gurariy, VI
    Seoane, JB
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 795 - 803
  • [4] On dense-lineability of sets of functions on R
    Aron, R. M.
    Garcia-Pacheco, F. J.
    Perez-Garcia, D.
    Seoane-Sepulveda, J. B.
    [J]. TOPOLOGY, 2009, 48 (2-4) : 149 - 156
  • [5] Algebrability of the set of everywhere surjective functions on C
    Aron, Richard M.
    Seoane-Sepulveda, Juan B.
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) : 25 - 31
  • [6] Algebrability of the set of non-convergent Fourier series
    Aron, Richard M.
    Perez-Garcia, David
    Seoane-Sepulveda, Juan B.
    [J]. STUDIA MATHEMATICA, 2006, 175 (01) : 83 - 90
  • [7] BALCERZAK M, 2000, REAL ANAL EXCHANGE, V26, P877
  • [8] ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF SOME SETS IN l1
    Banakh, Taras
    Bartoszewicz, Artur
    Glab, Szymon
    Szymonik, Emilia
    [J]. COLLOQUIUM MATHEMATICUM, 2012, 129 (01) : 75 - 85
  • [9] Bartoszewicz A, 2013, P AM MATH SOC, V141, P827
  • [10] On algebrability of nonabsolutely convergent series
    Bartoszewicz, Artur
    Glab, Szymon
    Poreda, Tadeusz
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) : 1025 - 1028