Porous sets and lineability of continuous functions on locally compact groups

被引:4
作者
Akbarbaglu, Ibrahim [1 ]
Maghsoudi, Saeid [1 ]
Seoane-Sepulveda, Juan B. [2 ]
机构
[1] Univ Zanjan, Dept Math, Zanjan 45195313, Iran
[2] Univ Complutense Madrid, Dept Anal Matemat, Fac Ciencias Matemat, E-28040 Madrid, Spain
关键词
Continuous function; sigma-c-lower porous set; Locally compact group; Convolution; Lineability; Spaceability; Algebrability; SPACES; ALGEBRABILITY; DICHOTOMIES; POROSITY;
D O I
10.1016/j.jmaa.2013.04.051
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a non-compact locally compact group. In this paper we study the size of the set {(f, g) is an element of A x B : f * g is well-defined on G} where A and B are normed spaces of continuous functions on G. We also consider the problem of the spaceability of the set (C-0 (G) boolean AND (C-0(G) * C-0(G))) \ C-00 (G) and (among other results) we show that, for G = R-n, the above set is strongly c-algebrable (and, therefore, algebrable and lineable) with respect to the convolution product. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:211 / 218
页数:8
相关论文
共 29 条
[1]   POROSITY OF CERTAIN SUBSETS OF LEBESGUE SPACES ON LOCALLY COMPACT GROUPS [J].
Akbarbaglu, I. ;
Maghsoudi, S. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 88 (01) :113-122
[2]   An answer to a question on the convolution of functions [J].
Akbarbaglu, Ibrahim ;
Maghsoudi, Saeid .
ARCHIV DER MATHEMATIK, 2012, 98 (06) :545-553
[3]   Lineability and spaceability of sets of functions on R [J].
Aron, R ;
Gurariy, VI ;
Seoane, JB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) :795-803
[4]   On dense-lineability of sets of functions on R [J].
Aron, R. M. ;
Garcia-Pacheco, F. J. ;
Perez-Garcia, D. ;
Seoane-Sepulveda, J. B. .
TOPOLOGY, 2009, 48 (2-4) :149-156
[5]   Algebrability of the set of everywhere surjective functions on C [J].
Aron, Richard M. ;
Seoane-Sepulveda, Juan B. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) :25-31
[6]   Algebrability of the set of non-convergent Fourier series [J].
Aron, Richard M. ;
Perez-Garcia, David ;
Seoane-Sepulveda, Juan B. .
STUDIA MATHEMATICA, 2006, 175 (01) :83-90
[7]  
BALCERZAK M, 2000, REAL ANAL EXCHANGE, V26, P877
[8]   ALGEBRAIC AND TOPOLOGICAL PROPERTIES OF SOME SETS IN l1 [J].
Banakh, Taras ;
Bartoszewicz, Artur ;
Glab, Szymon ;
Szymonik, Emilia .
COLLOQUIUM MATHEMATICUM, 2012, 129 (01) :75-85
[9]  
Bartoszewicz A, 2013, P AM MATH SOC, V141, P827
[10]   On algebrability of nonabsolutely convergent series [J].
Bartoszewicz, Artur ;
Glab, Szymon ;
Poreda, Tadeusz .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (05) :1025-1028