Recommendations with context aware framework using particle swarm optimization and unsupervised learning

被引:9
|
作者
Jain, Parul [1 ]
Dixit, Veer Sain [1 ]
机构
[1] Univ Delhi, Atma Ram Sanatan Dharam Coll, Dept Comp Sci, Delhi, India
关键词
Collaborative filtering; unsupervised learning; particle swarm optimization; euclidean distance; context aware recommendations;
D O I
10.3233/JIFS-179001
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Context aware recommender system has become an area of rigorous research attributing to incorporate context features, thereby increases accuracy while making recommendations. Most of the researches have proved neighborhood based collaborative filtering to be one of the most efficient mechanisms in recommender systems because of its simplicity, intuitiveness and wide usage in commercial domains. However, the basic challenges observed in this area include sparsity of data, scalability and utilization of contexts effectively. In this study, a novel framework is proposed to generate recommendations independently of the count and type of context dimensions, hence pertinent for real life recommender systems. In the framework, we have used k-prototype clustering technique to group contextually similar users to get a reduced and effective set. Additionally, particle swarm optimization technique is applied on the closest cluster to find the contribution of different context features to control data sparsity problem. Also, the proposed framework employs an improved similarity measure which considers contextual condition of the user. The results came from the series of experiments using two context enriched datasets showcasing that the proposed framework increases the accuracy of recommendations over other techniques from the same domain without consuming extra cost in terms of time.
引用
收藏
页码:4479 / 4490
页数:12
相关论文
共 50 条
  • [31] Unsupervised Classification of Geometrical Data based on Particle Swarm Optimization
    Ratanasanya, San
    Polvichai, Jumpol
    Sirinaovakul, Booncharoen
    2018 3RD TECHNOLOGY INNOVATION MANAGEMENT AND ENGINEERING SCIENCE INTERNATIONAL CONFERENCE (TIMES-ICON), 2018,
  • [32] Context-Aware Multi-modal Transportation Recommendation Based on Particle Swarm Optimization and LightGBM
    Sun Q.-M.
    Qu Z.-J.
    Ren C.-G.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (05): : 894 - 903
  • [33] A Framework for Optimization of Genetic Programming Evolved Classifier Expressions Using Particle Swarm Optimization
    Jabeen, Hajira
    Baig, Abdul Rauf
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 56 - 63
  • [34] Multi-objective energy aware task scheduling using Orthogonal Learning Particle Swarm Optimization on cloud environment
    Bantupalli Nagalakshmi
    Sumathy Subramanian
    International Journal of Information Technology, 2025, 17 (1) : 447 - 454
  • [35] A Novel Cyclic Discrete Optimization Framework for Particle Swarm Optimization
    Tao, Qian
    Chang, Hui-you
    Yi, Yang
    Gu, Chun-qin
    Li, Wen-Jie
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, 2010, 6215 : 166 - +
  • [36] Unsupervised Learning of Paragraph Embeddings for Context-Aware Recommendation
    Xie, Jin
    Zhu, Fuxi
    Huang, Minxue
    Xiong, Naixue
    Huang, Sheng
    Xiong, Wei
    IEEE ACCESS, 2019, 7 : 43100 - 43109
  • [37] A Proposed Framework for Recommendations Aggregation in Context Aware Recommender Systems
    Dixit, Veer Sain
    Jain, Parul
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE CONFLUENCE 2018 ON CLOUD COMPUTING, DATA SCIENCE AND ENGINEERING, 2018, : 231 - 236
  • [38] Weed Classification Using Particle Swarm Optimization and Deep Learning Models
    Manikandakumar, M.
    Karthikeyan, P.
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2023, 44 (01): : 913 - 927
  • [39] A multi-strategy particle swarm optimization framework based on deep reinforcement learning
    Hou, Leyong
    Fan, Debin
    Cheng, Junjie
    Wu, Honglian
    Peng, Hu
    Deng, Changshou
    2023 15TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE, ICACI, 2023,
  • [40] Swarm Reinforcement Learning Algorithms Based on Particle Swarm Optimization
    Iima, Hitoshi
    Kuroe, Yasuaki
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 1109 - 1114