Fourier Transforms in Generalized Lipschitz Classes

被引:3
作者
Volosivets, S. S. [1 ]
Golubov, B. I. [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Mech & Math, Saratov 410012, Russia
[2] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
Entire Function; STEKLOV Institute; Continuous Bounded Function; Fourier Integral; Ordinary Derivative;
D O I
10.1134/S0081543813010070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain sufficient conditions for the Fourier transform of a function f is an element of L-1(R) to belong to generalized Lipschitz classes defined by the modulus of smoothness of order m. The sharpness of these conditions is established in the cases when f(t) >= 0 on R or t f (t) >= 0 on R.
引用
收藏
页码:120 / 131
页数:12
相关论文
共 9 条