Edge-colouring and total-colouring chordless graphs

被引:17
作者
Machado, Raphael C. S. [1 ]
de Figueiredo, Celina M. H. [2 ]
Trotignon, Nicolas [3 ]
机构
[1] Inmetro, Rio De Janeiro, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, BR-21941 Rio De Janeiro, Brazil
[3] ENS Lyon, CNRS, LIP, Lyon, France
关键词
Chordless graph; Graph decomposition; Edge-colouring; Total-colouring; TOTAL-CHROMATIC NUMBER; NP-COMPLETENESS; PLANAR GRAPHS; INDEX; CYCLE;
D O I
10.1016/j.disc.2013.03.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph G is chordless if no cycle in G has a chord. In the present work we investigate the chromatic index and total chromatic number of chordless graphs. We describe a known decomposition result for chordless graphs and use it to establish that every chordless graph of maximum degree Delta >= 3 has chromatic index Delta and total chromatic number Delta + 1. The proofs are algorithmic in the sense that we actually output an optimal colouring of a graph instance in polynomial time. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1547 / 1552
页数:6
相关论文
共 38 条
[1]   GRAPHS THAT DO NOT CONTAIN A CYCLE WITH A NODE THAT HAS AT LEAST TWO NEIGHBORS ON IT [J].
Aboulker, Pierre ;
Radovanovic, Marko ;
Trotignon, Nicolas ;
Vuskovic, Kristina .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2012, 26 (04) :1510-1531
[2]  
[Anonymous], 2003, Combinatorial optimization: polyhedra and efficiency
[3]  
Barbosa M. M., 1998, C NUMER, V133, P45
[4]  
Behzad M., 1965, Doctoral Thesis
[5]   POLYNOMIAL ALGORITHMS FOR GRAPH ISOMORPHISM AND CHROMATIC INDEX ON PARTIAL K-TREES [J].
BODLAENDER, HL .
JOURNAL OF ALGORITHMS, 1990, 11 (04) :631-643
[6]   Edge and total coloring of interval graphs [J].
Bojarshinov, VA .
DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) :23-28
[7]   List edge and list total colourings of multigraphs [J].
Borodin, OV ;
Kostochka, AV ;
Woodall, DR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :184-204
[8]   NP-COMPLETENESS OF EDGE-COLORING SOME RESTRICTED GRAPHS [J].
CAI, L ;
ELLIS, JA .
DISCRETE APPLIED MATHEMATICS, 1991, 30 (01) :15-27
[9]  
Campos CN, 2008, ARS COMBINATORIA, V88, P335
[10]   The total chromatic number of split-indifference graphs [J].
Campos, C. N. ;
de Figueiredo, C. H. ;
Machado, R. ;
de Mello, C. P. .
DISCRETE MATHEMATICS, 2012, 312 (17) :2690-2693