The 2-dimensional Calabi flow

被引:8
作者
Chang, SC [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Math, Hsinchu 30043, Taiwan
关键词
D O I
10.1017/S0027763000025678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, based on a Harnack-type estimate and a local Sobolev constant bounded for the Calabi flow on closed surfaces, we extend author's previous results and show the long-time existence and convergence of solutions of 2-dimensional Calabi flow on closed surfaces. Then we establish the uniformization theorem for closed surfaces.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 13 条
[1]  
Calabi E, 1982, SEMINARS DIFFERENTIA, P259
[2]  
Calabi E., 1985, DIFFERENTIAL GEOMETR, P95
[3]   CRITICAL RIEMANNIAN 4-MANIFOLDS [J].
CHANG, SC .
MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) :601-625
[4]   On the existence of extremal metrics for L2-norm of scalar curvature on closed 3-manifolds [J].
Chang, SC ;
Wu, JT .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1999, 39 (03) :435-454
[5]   Global existence and convergence of solutions of Calabi flow on surfaces of genus h≥2 [J].
Chang, SC .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2000, 40 (02) :363-377
[6]  
Chang SC, 2005, CONTEMP MATH, V367, P17
[7]   Global existence and convergence of solutions of the Calabi flow on Einstein 4-manifolds [J].
Chang, SC .
NAGOYA MATHEMATICAL JOURNAL, 2001, 163 :193-214
[8]   Calabi flow in Riemann surfaces revisited: A new point of view [J].
Chen, XX .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2001, 2001 (06) :275-297
[9]   SEMIGLOBAL EXISTENCE AND CONVERGENCE OF SOLUTIONS OF THE ROBINSON-TRAUTMAN (2-DIMENSIONAL CALABI) EQUATION [J].
CHRUSCIEL, PT .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 137 (02) :289-313
[10]  
CROKE CB, 1980, ANN SCI ECOLE NORM S, V13, P419