Cyclic cohomology of etale groupoids: The general case

被引:42
作者
Crainic, M [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3508 TA Utrecht, Netherlands
关键词
cyclic cohomology; groupoids; crossed products; duality; foliations;
D O I
10.1023/A:1007756702025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a general method for computing the cyclic cohomology of crossed products by etale groupoids, extending the Feigin-Tsygan-Nistor spectral sequences. In particular we extend the computations performed by Brylinski, Burghelea, Connes, Feigin, Karoubi, Nistor, and Tsygan for the convolution algebra C-c(infinity) (G) of an etale groupoid, removing the Hausdorffness condition and including the computation of hyperbolic components. Examples like group actions on manifolds and foliations are considered.
引用
收藏
页码:319 / 362
页数:44
相关论文
共 46 条
[1]  
[Anonymous], 1995, LECT NOTES MATH
[2]  
ARTIN M, 1972, LECT NOTES MATH, V270
[3]  
BACI AB, 1992, CR ACAD SCI I-MATH, V315, P531
[4]  
BAUM P, 1982, GEOMETRIC K THEORY L
[5]  
BAUM P, 1988, FETE TOPOLOGY, P163
[6]  
BOTT R, 1982, GRADUATE TEXTS MATH, V82
[7]  
BROWN KS, 1982, GRADUATE TEXTS MATH, V87
[8]  
Brylinski J.-L., 1994, K-Theory, V8, P341, DOI 10.1007/BF00961407
[9]  
BRYLINSKI JL, 1987, ALGEBRAS ASS GROUP A
[10]   THE CYCLIC HOMOLOGY OF THE GROUP-RINGS [J].
BURGHELEA, D .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (03) :354-365