CT-Based Radiomic Analysis for Preoperative Prediction of Tumor Invasiveness in Lung Adenocarcinoma Presenting as Pure Ground-Glass Nodule

被引:25
作者
Kao, Tzu-Ning [1 ,2 ]
Hsieh, Min-Shu [2 ,3 ]
Chen, Li-Wei [4 ,5 ]
Yang, Chi-Fu Jeffrey [6 ]
Chuang, Ching-Chia [4 ,5 ]
Chiang, Xu-Heng [7 ]
Chen, Yi-Chang [2 ,4 ,5 ,8 ]
Lee, Yi-Hsuan [2 ,3 ]
Hsu, Hsao-Hsun [1 ,2 ]
Chen, Chung-Ming [4 ,5 ]
Lin, Mong-Wei [1 ,2 ]
Chen, Jin-Shing [1 ,2 ,9 ]
机构
[1] Natl Taiwan Univ Hosp, Dept Surg, Taipei 100225, Taiwan
[2] Natl Taiwan Univ Coll Med, Taipei 100225, Taiwan
[3] Natl Taiwan Univ Hosp, Dept Pathol, Taipei 100225, Taiwan
[4] Natl Taiwan Univ, Inst Biomed Engn, Coll Med, Taipei 106319, Taiwan
[5] Natl Taiwan Univ, Coll Engn, Taipei 106319, Taiwan
[6] Massachusetts Gen Hosp, Dept Thorac Surg, Boston, MA 02114 USA
[7] Natl Taiwan Univ, Inst Epidemiol & Prevent Med, Coll Publ Hlth, Taipei 100025, Taiwan
[8] Natl Taiwan Univ Hosp, Dept Radiol, Taipei 100225, Taiwan
[9] Natl Taiwan Univ Canc Ctr, Dept Surg Oncol, 1 Sec 1, Jen-Ai Rd, Taipei 106037, Taiwan
关键词
ground-glass nodule; invasiveness; lung adenocarcinoma; lung cancer surgery; radiomic feature analysis; COMPUTED-TOMOGRAPHY; INTERNATIONAL ASSOCIATION; AIR SPACES; CANCER; SOCIETY; CLASSIFICATION; LOBECTOMY; SPREAD;
D O I
10.3390/cancers14235888
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary To forecast the invasiveness of the increasingly detected pure ground glass nodules, 338 cases were included in this study. Among them, 22.8% (77/338) of patients with pGGN were diagnosed with invasive adenocarcinoma. There were no nodal metastases or recurrence during a mean 78-month follow-up. A radiomic prediction model was constructed to predict the tumor's invasiveness. The radiomic prediction model achieved good performance with an AUC of 0.7676. The prediction model can be used clinically in the treatment selection process. It remains a challenge to preoperatively forecast whether lung pure ground-glass nodules (pGGNs) have invasive components. We aimed to construct a radiomic model using tumor characteristics to predict the histologic subtype associated with pGGNs. We retrospectively reviewed clinicopathologic features of pGGNs resected in 338 patients with lung adenocarcinoma between 2011-2016 at a single institution. A radiomic prediction model based on forward sequential selection and logistic regression was constructed to differentiate adenocarcinoma in situ (AIS)/minimally invasive adenocarcinoma (MIA) from invasive adenocarcinoma. The study cohort included 133 (39.4%), 128 (37.9%), and 77 (22.8%) patients with AIS, MIA, and invasive adenocarcinoma (acinar 55.8%, lepidic 33.8%, papillary 10.4%), respectively. The majority (83.7%) underwent sublobar resection. There were no nodal metastases or tumor recurrence during a mean follow-up period of 78 months. Three radiomic features-cluster shade, homogeneity, and run-length variance-were identified as predictors of histologic subtype and were selected to construct a prediction model to classify the AIS/MIA and invasive adenocarcinoma groups. The model achieved accuracy, sensitivity, specificity, and AUC of 70.6%, 75.0%, 70.0%, and 0.7676, respectively. Applying the developed radiomic feature model to predict the histologic subtypes of pGGNs observed on CT scans can help clinically in the treatment selection process.
引用
收藏
页数:16
相关论文
共 37 条
[1]  
ACoRCo, 2019, LUNG RADS LUNG RADS
[2]   Peripheral lung adenocarcinoma: Correlation of thin-section CT findings with histologic prognostic factors and survival [J].
Aoki, T ;
Tomoda, Y ;
Watanabe, H ;
Nakata, H ;
Kasai, T ;
Hashimoto, H ;
Kodate, M ;
Osaki, T ;
Yasumoto, K .
RADIOLOGY, 2001, 220 (03) :803-809
[3]   British Thoracic Society guidelines for the investigation and management of pulmonary nodules [J].
Callister, M. E. J. ;
Baldwin, D. R. ;
Akram, A. R. ;
Barnard, S. ;
Cane, P. ;
Draffan, J. ;
Franks, K. ;
Gleeson, F. ;
Graham, R. ;
Malhotra, P. ;
Prokop, M. ;
Rodger, K. ;
Subesinghe, M. ;
Waller, D. ;
Woolhouse, I. .
THORAX, 2015, 70 :1-54
[4]   Radiomic Values from High-Grade Subtypes to Predict Spread Through Air Spaces in Lung Adenocarcinoma [J].
Chen, Li-Wei ;
Lin, Mong-Wei ;
Hsieh, Min-Shu ;
Yang, Shun-Mao ;
Wang, Hao-Jen ;
Chen, Yi-Chang ;
Chen, Hsin-Yi ;
Hu, Yu-Hsuan ;
Lee, Chi-En ;
Chen, Jin-Shing ;
Chang, Yeun-Chung ;
Chen, Chung-Ming .
ANNALS OF THORACIC SURGERY, 2022, 114 (03) :999-1006
[5]   Prediction of micropapillary and solid pattern in lung adenocarcinoma using radiomic values extracted from near-pure histopathological subtypes [J].
Chen, Li-Wei ;
Yang, Shun-Mao ;
Wang, Hao-Jen ;
Chen, Yi-Chang ;
Lin, Mong-Wei ;
Hsieh, Min-Shu ;
Song, Hsiang-Lin ;
Ko, Huan-Jang ;
Chen, Chung-Ming ;
Chang, Yeun-Chung .
EUROPEAN RADIOLOGY, 2021, 31 (07) :5127-5138
[6]   Propensity-Matched Analysis Comparing Survival After Sublobar Resection and Lobectomy for cT1N0 Lung Adenocarcinoma [J].
Chiang, Xu-Heng ;
Hsu, Hsao-Hsun ;
Hsieh, Min-Shu ;
Chang, Chia-Hong ;
Tsai, Tung-Ming ;
Liao, Hsien-Chi ;
Tsou, Kuan-Chuan ;
Lin, Mong-Wei ;
Chen, Jin-Shing .
ANNALS OF SURGICAL ONCOLOGY, 2020, 27 (03) :703-715
[7]   This Week in the Journal [J].
de Koning, H. J. ;
van der Aalst, C. M. ;
de Jong, P. A. ;
Scholten, E. T. ;
Nackaerts, K. ;
Heuvelmans, M. A. ;
Lammers, J. -W. J. ;
Weenink, C. ;
Yousaf-Khan, U. ;
Horeweg, N. ;
van't Westeinde, S. ;
Prokop, M. ;
Mali, W. P. ;
Hoesein, F. A. A. Mohamed ;
van Ooijen, P. M. A. ;
Aerts, J. G. J. V. ;
den Bakker, M. A. ;
Thunnissen, E. ;
Verschakelen, J. ;
Vliegenthart, R. ;
Walter, J. E. ;
ten Haaf, K. ;
Groen, H. J. M. ;
Oudkerk, M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (06) :503-513
[8]   Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule [J].
Fan, Li ;
Fang, MengJie ;
Li, ZhaoBin ;
Tu, WenTing ;
Wang, ShengPing ;
Chen, WuFei ;
Tian, Jie ;
Dong, Di ;
Liu, ShiYuan .
EUROPEAN RADIOLOGY, 2019, 29 (02) :889-897
[9]  
Frangi AF, 1998, LECT NOTES COMPUT SC, V1496, P130, DOI 10.1007/BFb0056195
[10]   The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer [J].
Goldstraw, Peter ;
Chansky, Kari ;
Crowley, John ;
Rami-Porta, Ramon ;
Asamura, Hisao ;
Eberhardt, Wilfried E. E. ;
Nicholson, Andrew G. ;
Groome, Patti ;
Mitchell, Alan ;
Bolejack, Vanessa .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (01) :39-51