A Multi-features Based Particle Filtering Algorithm for Robust and Efficient Object Tracking

被引:0
作者
Ye, Shuang [1 ]
Zhao, Yanguo [1 ]
Zheng, Feng [1 ]
Song, Zhan [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Beijing 100864, Peoples R China
来源
MULTIMEDIA AND SIGNAL PROCESSING | 2012年 / 346卷
关键词
object tracking; multi-features; mean-shift; particle filter;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This works presents a novel approach for robust and efficient object tracking. To make the feature representation more robust, color and the local binary pattern features are fused via a proposed scheme. The partial filter is used for the feature tracking. To improve its efficiency, a mean shift based method is introduced to decrease the required partials so as to decrease the computation cost. With the robust multi-features description and boosted partial filter algorithm, satisfied tracking results can be obtained via the experiments with different datasets, and showed distinct improvements in both tracking robustness and efficiency.
引用
收藏
页码:8 / 15
页数:8
相关论文
共 12 条
  • [1] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [2] Kernel-based object tracking
    Comaniciu, D
    Ramesh, V
    Meer, P
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) : 564 - 577
  • [3] Comaniciu D, 2000, PROC CVPR IEEE, P142, DOI 10.1109/CVPR.2000.854761
  • [4] Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm
    Deguchi, K
    Kawanaka, O
    Okatani, T
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 506 - 509
  • [5] Efficient and robust fragments-based multiple kernels tracking
    Fang, Jiangxiong
    Yang, Jie
    Liu, Huaxiang
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2011, 65 (11) : 915 - 923
  • [6] CONDENSATION - Conditional density propagation for visual tracking
    Isard, M
    Blake, A
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (01) : 5 - 28
  • [7] Kwon J, 2009, PROC CVPR IEEE, P991, DOI 10.1109/CVPRW.2009.5206501
  • [8] Visual Tracking Decomposition
    Kwon, Junseok
    Lee, Kyoung Mu
    [J]. 2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 1269 - 1276
  • [9] Leichter I, 2004, PROC CVPR IEEE, P445
  • [10] Hybrid Blob and Particle Filter Tracking Approach for Robust Object Tracking
    Tang, Sze Ling
    Kadim, Zulaikha
    Liang, Kim Meng
    Lim, Mei Kuan
    [J]. ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, 2010, 1 (01): : 2543 - 2551