Properties of pseudoholomorphic curves in symplectisations .1. Asymptotics

被引:119
作者
Hofer, H
Wysocki, K
Zehnder, E
机构
[1] ETH Zurich
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1996年 / 13卷 / 03期
关键词
finite energy planes; pseudoholomorphic curves; contact forms;
D O I
10.1016/S0294-1449(16)30108-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given an oriented, compact, 3-dimenional contact manifold (M, lambda) we study maps (u) over tilde = (a, u) : C --> R x M satisfying the Cauch-Riemann type equation (u) over tilde(s) + (J) over tilde() (J) over tilde(t) = 0, with a very special almost complex structure (J) over tilde related to the contact form lambda on M. If the energy is positive and bounded, 0 < E((u) < infinity, then the asymptotic behavior of u : C --> M as \z\ --> infinity is intimately related to the dynamics of the Reeb vector field X(lambda) on M. Assuming the periodic solutions of X(lambda) to be non degenerate, we shall show that lim(R-->infinity) u(Re-2 pi it) = x(Tt) for a T-periodic solution x with E((u) over tilde) = T. The main result is an asymptotic formula which demonstrates the exponential nature of this limit. Some consequences for the geometry of the maps u : C --> M are deduced.
引用
收藏
页码:337 / 379
页数:43
相关论文
共 12 条
[1]  
ABBAS C, IN PRESS BIRKHAUSER
[2]   SYMPLECTIC HOMOLOGY-I OPEN SETS IN C(N) [J].
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1994, 215 (01) :37-88
[3]   PSEUDO HOLOMORPHIC-CURVES IN SYMPLECTIC-MANIFOLDS [J].
GROMOV, M .
INVENTIONES MATHEMATICAE, 1985, 82 (02) :307-347
[4]   PSEUDOHOLOMORPHIC CURVES IN SYMPLECTIZATIONS WITH APPLICATIONS TO THE WEINSTEIN CONJECTURE IN DIMENSION 3 [J].
HOFER, H .
INVENTIONES MATHEMATICAE, 1993, 114 (03) :515-563
[5]   PROPERTIES OF PSEUDO-HOLOMORPHIC CURVES IN SYMPLECTISATIONS .2. EMBEDDING CONTROLS AND ALGEBRAIC INVARIANTS [J].
HOFER, H ;
WYSOCKI, K ;
ZEHNDER, E .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (02) :270-328
[6]  
HOFER H, IN PRESS DUKE MATH J
[7]  
HOFER H, DYNAMICS STRICTLY CO
[8]  
Hofer H, PROPERTIES PSEUDOHOL
[9]  
HOFER HELMUT, 1994, BIRKHAUSER ADV TEXTS, DOI DOI 10.1007/978-3-0348-8540-9
[10]  
Kato T., 1976, Grundlehren der Mathematischen Wissenschaften, V132