N-doped reduced graphene oxide supported Cu2O nanocubes as high active catalyst for CO2 electroreduction to C2H4

被引:68
|
作者
Ning, Hui [1 ]
Mao, Qinhu [1 ]
Wang, Wenhang [1 ]
Yang, Zhongxue [1 ]
Wang, Xiaoshan [1 ]
Zhao, Qingshan [1 ]
Song, Yan [2 ]
Wu, Mingbo [1 ]
机构
[1] China Univ Petr East China, Inst New Energy, Coll Chem Engn, State Key Lab Heavy Oil Proc, Qingdao 266580, Peoples R China
[2] Chinese Acad Sci, Inst Coal Chem, CAS Key Lab Carbon Mat, Taiyuan 030001, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
N-doped graphene; Cuprous oxide; Electroreduction; Carbon dioxide; Ethylene; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; ETHYLENE; ELECTROCATALYST; NANOPARTICLES; NANOHYBRIDS; TEMPERATURE; PERFORMANCE; SELECTIVITY; SITES;
D O I
10.1016/j.jallcom.2019.01.142
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electrocatalytic carbon dioxide reduction (CO2RR) to high value-added chemicals is a promising technology to address greenhouse effect and energy challenges. As ethylene is a desirable product of CO2RR with great economic value, herein, we proposed a facile method to in situ loading cuprous oxide (Cu2O) nanocubes on nitrogen doped reduced graphene oxide (NRGO) to fabricate a Cu2O/NRGO composite under ambient conditions, which exits a high faradaic efficiency of ethylene (19.7%) at -1.4 V (vs. reversible hydrogen electrode) with stable current density of 12 mA cm(-2). The mass activity of Cu2O supported on NRGO towards C2H4 formation reaches as high as 136.1 mmol h(-1) g(-1), which is more than 24-folds of pristine Cu2O.SEM images reveal that Cu2O with perfect cubic morphology are highly dispersed on NRGO, promoting the exposure of active sites for CO2RR. Additionally, the pyridinic-N in NRGO was supposed to behave synergistic effect with Cu2O, leading to a clearly improvement of activity and durability of Cu2O for electrocatalytic CO2 reduction to ethylene. Our work provides a useful strategy to enhance the catalytic performance of copper catalysts for CO2RR by using nitrogen doped carbon materials as supports. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 50 条
  • [1] Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4
    Wang, Wenhang
    Ning, Hui
    Yang, Zhongxue
    Feng, Zhaoxuan
    Wang, Jialin
    Wang, Xiaoshan
    Mao, Qinhu
    Wu, Wenting
    Zhao, Qingshan
    Hu, Han
    Song, Yan
    Wu, Mingbo
    ELECTROCHIMICA ACTA, 2019, 306 : 360 - 365
  • [2] Dual-atom Cu2/N-doped carbon catalyst for electroreduction of CO2 to C2H4
    Sun, Guodong
    Cao, Yanan
    Li, Deqing
    Hu, Mingzhen
    Liang, Xinhu
    Wang, Zhe
    Cai, Zengjian
    Shen, Fengyi
    Chen, Bozhen
    Zhou, Kebin
    APPLIED CATALYSIS A-GENERAL, 2023, 651
  • [3] Integration of Cobalt Phthalocyanine, Acetylene Black and Cu2O Nanocubes for Efficient Electroreduction of CO2 to C2H4
    Liu, Jilin
    Yu, Kai
    Qiao, Zhiyuan
    Zhu, Qianlong
    Zhang, Hong
    Jiang, Jie
    CHEMSUSCHEM, 2023, 16 (19)
  • [4] Constructing Ag/Cu2O Interface for Efficient Neutral CO2 Electroreduction to C2H4
    Wei, Zongnan
    Wang, Wenwen
    Shao, Tao
    Yang, Shuaibing
    Liu, Chang
    Si, Duanhui
    Cao, Rong
    Cao, Minna
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (08)
  • [5] Ag-decorated Cu2O porous hollow catalyst for promoting CO2 electroreduction to C2H4 via enrichment of CO
    Li, Jianhao
    Hu, Zhicheng
    Han, Shuhuan
    Cao, Dapeng
    Zeng, Xiaofei
    Chen, Jianfeng
    APPLIED CATALYSIS A-GENERAL, 2025, 694
  • [6] Stabilizing Cu2O for enhancing selectivity of CO2 electroreduction to C2H4 with the modification of Pd nanoparticles
    Xiao, Difei
    Bao, Xiaolei
    Zhang, Minghui
    Li, Zaiqi
    Wang, Zeyan
    Gao, Yugang
    Zheng, Zhaoke
    Wang, Peng
    Cheng, Hefeng
    Liu, Yuanyuan
    Dai, Ying
    Huang, Baibiao
    CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [7] Spherical and porous Cu2O nanocages with Cu2O/Cu(OH)2 Surface: Synthesis and their promising selectivity for catalysing CO2 electroreduction to C2H4
    Cheng, Tain-Kei
    Jeromiyas, Nithiya
    Lin, Yi-Kai
    Yang, Cheng-Chun
    Kao, Chai-Lin
    Chen, Po-Yu
    Lee, Chien-Liang
    APPLIED SURFACE SCIENCE, 2024, 660
  • [8] Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate
    Sun, Junjie
    Zheng, Wanzhen
    Lyu, Siliu
    He, Feng
    Yang, Bin
    Li, Zhongjian
    Lei, Lecheng
    Hou, Yang
    CHINESE CHEMICAL LETTERS, 2020, 31 (06) : 1415 - 1421
  • [9] Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate
    Junjie Sun
    Wanzhen Zheng
    Siliu Lyu
    Feng He
    Bin Yang
    Zhongjian Li
    Lecheng Lei
    Yang Hou
    Chinese Chemical Letters, 2020, 31 (06) : 1415 - 1421
  • [10] Cu2O Nanoparticles Wrapped by N-Doped Carbon Nanotubes for Efficient Electroreduction of CO2 to C2 Products
    Liu, Jilin
    Yu, Kai
    Zhu, Qianlong
    Qiao, Zhiyuan
    Zhang, Hong
    Jiang, Jie
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (30) : 36135 - 36142