Energy dependent Schrodinger operators and complex Hamiltonian systems on Riemann surfaces

被引:19
作者
Alber, MS
Luther, GG
Marsden, JE
机构
[1] HEWLETT PACKARD LABS, BASIC RES INST MATH SCI, BRISTOL BS12 6QZ, AVON, ENGLAND
[2] CALTECH, CONTROL & DYNAM SYST 11681, PASADENA, CA 91125 USA
关键词
D O I
10.1088/0951-7715/10/1/015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use so-called energy-dependent Schrodinger operators to establish a link between special classes of solutions of N-component systems of evolution equations and finite dimensional Hamiltonian systems on the moduli spaces of Riemann surfaces. We also investigate the phase-space geometry of these Hamiltonian systems and introduce deformations of the level sets associated to conserved quantities, which results in a new class of solutions with monodromy for N-component systems of PDEs. After constructing a variety of mechanical systems related to the spatial flows of nonlinear evolution equations, we investigate their semiclassical limits. In particular, we obtain semiclassical asymptotics for the Bloch eigenfunctions of the energy dependent Schrodinger operators, which is of importance in investigating zero-dispersion limits of N-component systems of PDEs.
引用
收藏
页码:223 / 241
页数:19
相关论文
共 43 条
[1]  
Ablowitz M. J., 1981, Solitons and the Inverse Scattering Transform
[2]  
Ablowitz Mark J., 1991, SOLITONS NONLINEAR E, V149, DOI 10.1017/CBO9780511623998
[3]   ON THE LINK BETWEEN UMBILIC GEODESICS AND SOLITON-SOLUTIONS OF NONLINEAR PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1940) :677-692
[4]   THE GEOMETRY OF PEAKED SOLITONS AND BILLIARD SOLUTIONS OF A CLASS OF INTEGRABLE PDES [J].
ALBER, MS ;
CAMASSA, R ;
HOLM, DD ;
MARSDEN, JE .
LETTERS IN MATHEMATICAL PHYSICS, 1994, 32 (02) :137-151
[5]   ON GEOMETRIC PHASES FOR SOLITON-EQUATIONS [J].
ALBER, MS ;
MARSDEN, JE .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 149 (02) :217-240
[6]  
ALBER MS, 1994, NATO ADV SCI INST SE, V320, P273
[8]  
ALBER MS, 1991, ASYMPTOTIC ANAL, V5, P191
[9]  
ALBER MS, 1996, FIELDS I COMMUN, V8, P1
[10]  
ALBER SI, 1985, CR ACAD SCI I-MATH, V301, P777