Prediction of soluble solids content of pineapple via non-invasive low cost visible and shortwave near infrared spectroscopy and artificial neural network

被引:51
作者
Chia, Kim Seng [1 ]
Rahim, Herlina Abdul [1 ]
Rahim, Ruzairi Abdul [1 ]
机构
[1] Univ Teknol Malaysia, Fac Elect Engn, Dept Control & Instrumentat, Utm Skudai 81310, Johor, Malaysia
关键词
CHEMOMETRICS; REGRESSION;
D O I
10.1016/j.biosystemseng.2012.07.003
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The potential of a combination of a low cost visible and shortwave near infrared (VIS -SWNIR) spectrometer and an artificial neural network in the non-invasive soluble solids content assessment of pineapple was evaluated. Four data sets (i.e. VIS-SWNIR spectra and soluble solids content reference) of pineapple samples from different days were acquired and independently processed. Baseline shift effect in the reflectance spectra was removed using a first order derivative coupled with a first order Savitzky-Golay smoothing filter. The dispersion of the spectral data was reduced by applying robust principal component analysis. Potential outliers were identified via an externally studentised residual approach. An artificial neural network was trained using one of the four data sets and validated using the other three data sets. From interpolation analysis, the root mean square error of calibration (RMSEG), correlation coefficient of calibration (r(c)), root mean square error of prediction (RMSEP) and correlation coefficient of prediction (r(p)) of the artificial neural network with the first two robust principal components were 0.84 degrees Brix, 0.85, 0.87 degrees Brix and 0.68, respectively. The predicted results by using three data sets from different days suggest that the use of a low cost VIS-SWNIR spectrometer is promising for the non-invasive soluble solids content assessment of pineapple. (C) 2012 IAgrE. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:158 / 165
页数:8
相关论文
共 31 条
[1]  
[Anonymous], INT JOINT C NEUR NET
[2]   Cross-validatory selection of test and validation sets in multivariate calibration and neural networks as applied to spectroscopy [J].
Burden, FR ;
Brereton, RG ;
Walsh, PT .
ANALYST, 1997, 122 (10) :1015-1022
[3]   Vis-NIR measurement of soluble solids in cherry and apricot by PLS regression and wavelength selection [J].
Carlini, P ;
Massantini, R ;
Mencarelli, F .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2000, 48 (11) :5236-5242
[4]   Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy [J].
Chen, Quansheng ;
Guo, Zhiming ;
Zhao, Jiewen ;
Ouyang, Qin .
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2012, 60 :92-97
[5]   Technical Report: Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison [J].
Chia, Kim-seng ;
Rahim, Herlina Abdul ;
Rahim, Ruzairi Abdul .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2012, 13 (02) :145-151
[6]  
Cook R. D., 1982, RESIDUALS INFLUENCE
[7]   Robust statistics in data analysis - A review basic concepts [J].
Daszykowski, M. ;
Kaczmarek, K. ;
Heyden, Y. Vander ;
Walczak, B. .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2007, 85 (02) :203-219
[8]  
Davey M. R., 2007, Transgenic Crops V, P97
[9]  
Davies A M., 2006, Spectroscopy Europe, V18
[10]  
Despagne F, 1998, ANALYST, V123, p157R