On the growth of solutions of second order complex differential equation with meromorphic coefficients

被引:2
作者
Wu, Pengcheng [3 ]
Wu, Shengjian [1 ,2 ]
Zhu, Jun [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[3] Guizhou Normal Univ, Dept Math, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
deficient value; Edrei-Fuchs class; meromorphic function; infinite order; F'';
D O I
10.1186/1029-242X-2012-117
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the differential equation f'' + Af' + Bf = 0 where A(z) and B(z) a parts per thousand cent 0 are mero-morphic functions. Assume that A(z) belongs to the Edrei-Fuchs class and B(z) has a deficient value a, if f a parts per thousand cent 0 is a meromorphic solution of the equation, then f must have infinite order. Mathematical Subject Classification 2000: 34M10; 30D35.
引用
收藏
页数:13
相关论文
共 14 条
[1]  
[Anonymous], T AM MATH SOC, DOI DOI 10.1090/S0002-9947-1988-0920167-5
[2]  
Chen ZX, 2002, SCI CHINA SER A, V45, P290
[3]  
Chen ZX, 1999, KODAI MATH J, V22, P208, DOI [10.2996/kmj/1138044043, DOI 10.2996/KMJ/1138044043]
[4]   ON MEROMORPHIC FUNCTIONS WITH REGIONS FREE OF POLES AND ZEROS [J].
EDREI, A ;
FUCHS, WHJ .
ACTA MATHEMATICA, 1962, 108 :113-145
[5]  
Edrei A., 1962, Proc. Lond. Math. Soc. (3), V12, P315, DOI [10.1112/plms/s3-12.1.315, DOI 10.1112/PLMS/S3-12.1.315]
[6]   ESTIMATES FOR THE LOGARITHMIC DERIVATIVE OF A MEROMORPHIC FUNCTION, PLUS SIMILAR ESTIMATES [J].
GUNDERSEN, GG .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :88-104
[7]  
HAYMAN WK, 1964, MEROMORPHIC FUNCTION
[8]   ON THE GROWTH OF SOLUTIONS OF F'' + GF' + HF = 0 [J].
HELLERSTEIN, S ;
MILES, J ;
ROSSI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (02) :693-706
[9]  
Kwon K, 1996, Kodai Math. J., V19, P378, DOI DOI 10.2996/KMJ/1138043654
[10]   Growth of solutions of second order linear differential equations [J].
Laine, I ;
Wu, PC .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (09) :2693-2703