Permanent ferroelectric retention of BiFeO3 mesocrystal

被引:54
作者
Hsieh, Ying-Hui [1 ]
Xue, Fei [2 ]
Yang, Tiannan [2 ]
Liu, Heng-Jui [1 ]
Zhu, Yuanmin [3 ,4 ]
Chen, Yi-Chun [5 ]
Zhan, Qian [3 ]
Duan, Chun-Gang [6 ]
Chen, Long-Qing [2 ]
He, Qing [7 ]
Chu, Ying-Hao [1 ,8 ]
机构
[1] Natl Chiao Tung Univ, Dept Mat Sci & Engn, Hsinchu 30010, Taiwan
[2] Penn State Univ, Dept Mat & Engn, University Pk, PA 16802 USA
[3] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[4] Tsinghua Univ, Sch Mat Sci & Engn, Natl Ctr Electron Microscopy Beijing, Beijing 100084, Peoples R China
[5] Natl Cheng Kung Univ, Dept Phys, Tainan 70101, Taiwan
[6] East China Normal Univ, Minist Educ, Key Lab Polar Mat & Devices, Shanghai 200241, Peoples R China
[7] Univ Durham, Dept Phys, Durham DH1 3LE, England
[8] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
PHASE-FIELD MODEL; THIN-FILMS; DOMAIN-STRUCTURES; MULTIFERROICS; FUNCTIONALITIES; MICROSTRUCTURE; POLARIZATION;
D O I
10.1038/ncomms13199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-volatile electronic devices based on magnetoelectric multiferroics have triggered new possibilities of outperforming conventional devices for applications. However, ferroelectric reliability issues, such as imprint, retention and fatigue, must be solved before the realization of practical devices. In this study, everlasting ferroelectric retention in the heteroepitaxially constrained multiferroic mesocrystal is reported, suggesting a new approach to overcome the failure of ferroelectric retention. Studied by scanning probe microscopy and transmission electron microscopy, and supported via the phase-field simulations, the key to the success of ferroelectric retention is to prevent the crystal from ferroelastic deformation during the relaxation of the spontaneous polarization in a ferroelectric nanocrystal.
引用
收藏
页数:9
相关论文
共 50 条
[1]  
Agantsev A. K., 2008, FERROELECTRICS, V375, P19
[2]   Reliable polarization switching of BiFeO3 [J].
Baek, S. H. ;
Eom, C. B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1977) :4872-4889
[3]  
Baek SH, 2010, NAT MATER, V9, P309, DOI [10.1038/NMAT2703, 10.1038/nmat2703]
[4]   The Nature of Polarization Fatigue in BiFeO3 [J].
Baek, Seung-Hyub ;
Folkman, Chad M. ;
Park, Jae-Wan ;
Lee, Sanghan ;
Bark, Chung-Wung ;
Tybell, Thomas ;
Eom, Chang-Beom .
ADVANCED MATERIALS, 2011, 23 (14) :1621-+
[5]   Multiferroics:: Towards a magnetoelectric memory [J].
Bibes, Manuel ;
Barthelemy, Agnes .
NATURE MATERIALS, 2008, 7 (06) :425-426
[6]   Ferroelectric PbTiO3/SrRuO3 Superlattices with Broken Inversion Symmetry [J].
Callori, S. J. ;
Gabel, J. ;
Su, D. ;
Sinsheimer, J. ;
Fernandez-Serra, M. V. ;
Dawber, M. .
PHYSICAL REVIEW LETTERS, 2012, 109 (06)
[7]   Physics and Applications of Bismuth Ferrite [J].
Catalan, Gustau ;
Scott, James F. .
ADVANCED MATERIALS, 2009, 21 (24) :2463-2485
[8]   Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films [J].
Chen, Aiping ;
Bi, Zhenxing ;
Jia, Quanxi ;
MacManus-Driscoll, Judith L. ;
Wang, Haiyan .
ACTA MATERIALIA, 2013, 61 (08) :2783-2792
[9]   Phase-field method of phase transitions/domain structures in ferroelectric thin films: A review [J].
Chen, Long-Qing .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (06) :1835-1844
[10]   Phase-field models for microstructure evolution [J].
Chen, LQ .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2002, 32 :113-140