Insight into the channel ion distribution and influence on the lithium insertion properties of hexatitanates A2Ti6O13 (A = Na, Li, H) as candidates for anode materials in lithium-ion batteries

被引:44
作者
Carlos Perez-Flores, Juan [1 ]
Garcia-Alvarado, Flaviano [1 ]
Hoelzel, Markus [2 ]
Sobrados, Isabel [3 ]
Sanz, Jesus [3 ]
Kuhn, Alois [1 ]
机构
[1] Univ CEU San Pablo, Fac Farm, Dept Quim, Madrid 28668, Spain
[2] Tech Univ Darmstadt, Fachbereich Mat & Geowissensch, Fachgebiet Strukt Forsch, D-63762 Darmstadt, Germany
[3] ICMM, Dpto Energia & Tecnol Sostenibles, Madrid 28049, Spain
关键词
CODOPED TIO2 PHOTOCATALYSTS; CRYSTAL-STRUCTURE; NEUTRON-DIFFRACTION; EXCHANGE SYNTHESIS; NA2TI6O13; TEMPERATURE; REFINEMENT; TITANATES; LI2TI6O13; BEHAVIOR;
D O I
10.1039/c2dt31665j
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Li2Ti6O13 and H2Ti6O13 were easily synthesized from Na2Ti6O13 by successive Na+-Li+-H+ ion exchange. The crystal structures of Na2Ti6O13, Li2Ti6O13 and H2Ti6O13 were investigated using neutron powder diffraction. Monovalent A(+) cations (Na, Li and H) have been located using difference Fourier analysis. Although monoclinic lattice parameters (space group C2/m) of the three titanates remain almost unchanged with retention of the basic [Ti6O132-] network, monovalent Na, Li and H cations occupy different sites in the tunnel space. By comparing the structural details concerning the A(+) oxygen coordination, i.e. NaO8 square prismatic coordination, LiO4 square planar coordination and covalently bond H atoms, with results from N-23(a), Li-7 and H-1 NMR spectroscopy we were able to obtain a more detailed insight into the respective local distortions and anharmonic motions. We were able to show that the site that the A(+) cation occupies in the hexatitanate channel structure strongly influences the lithium insertion properties of these compounds and therefore their usefulness as electrode materials for energy storage.
引用
收藏
页码:14633 / 14642
页数:10
相关论文
共 40 条
[11]   ION-EXCHANGE REACTIONS OF MIXED OXIDES [J].
ENGLAND, WA ;
GOODENOUGH, JB ;
WISEMAN, PJ .
JOURNAL OF SOLID STATE CHEMISTRY, 1983, 49 (03) :289-299
[12]   Probing molten salt flux reactions using time-resolved in situ high-temperature powder X-ray diffraction:: A new synthesis route to the mixed-valence NaTi2O4 [J].
Geselbracht, MJ ;
Noailles, LD ;
Ngo, LT ;
Pikul, JH ;
Walton, RI ;
Cowell, ES ;
Millange, F ;
O'Hare, D .
CHEMISTRY OF MATERIALS, 2004, 16 (06) :1153-1159
[13]  
GHOSE S, 1973, AM MINERAL, V58, P748
[14]   Powder neutron-diffraction profile analysis of zero-dimensional H-bonded crystal HCrO2 [J].
Ichikawa, M ;
Gustafsson, T ;
Olovsson, I ;
Tsuchida, T .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1999, 60 (11) :1875-1880
[15]   PHOTOCATALYTIC ACTIVITY OF ALKALI-METAL TITANATES COMBINED WITH RU IN THE DECOMPOSITION OF WATER [J].
INOUE, Y ;
KUBOKAWA, T ;
SATO, K .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (10) :4059-4063
[16]  
Jardim P. M., 2007, NANOTECHNOLOGY, P18
[17]   Ion-Exchange Synthesis, Crystal Structure, and Electrochemical Properties of Li2Ti6O13 [J].
Kataoka, Kunimitsu ;
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Ohshima, Ken-ichi ;
Akimoto, Junji .
CHEMISTRY OF MATERIALS, 2011, 23 (09) :2344-2352
[18]   Crystal growth and structure refinement of monoclinic Li2TiO3 [J].
Kataoka, Kunimitsu ;
Takahashi, Yasuhiko ;
Kijima, Norihito ;
Nagai, Hideaki ;
Akimoto, Junji ;
Idemoto, Yasushi ;
Ohshima, Ken-ichi .
MATERIALS RESEARCH BULLETIN, 2009, 44 (01) :168-172
[19]   Lithium storage in nanostructured TiO2 made by hydrothermal growth [J].
Kavan, L ;
Kalbác, M ;
Zukalová, M ;
Exnar, I ;
Lorenzen, V ;
Nesper, R ;
Graetzel, M .
CHEMISTRY OF MATERIALS, 2004, 16 (03) :477-485
[20]   Lithium Migration at High Temperatures in Li4Ti5O12 Studied by Neutron Diffraction [J].
Laumann, Andreas ;
Boysen, Hans ;
Bremholm, Martin ;
Fehr, K. Thomas ;
Hoelzel, Markus ;
Holzapfel, Michael .
CHEMISTRY OF MATERIALS, 2011, 23 (11) :2753-2759